Skip to main content
Log in

Integers, without large prime factors, in arithmetic progressions, I

  • Published:
Acta Mathematica

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alladi, K., Asymptotic estimates of sums involving the Moebius function II.Trans. Amer. Math. Soc., 272 (1982), 87–105.

    Article  MATH  MathSciNet  Google Scholar 

  2. Balog, A. &Pomerance, C., The distribution of smooth numbers in arithmetic progressions.Proc. Amer. Math. Soc., 115 (1992), 33–43.

    Article  MathSciNet  MATH  Google Scholar 

  3. de Bruijn, N. G., On the number of positive integers ≤x and free prime factors >y.Nederl. Acad. Wetensch. Proc. Ser. A, 54 (1951), 50–60 (=Indag. Math., 13 (1951), 50–60); II.Indag. Math., 28 (1966), 239–247.

    MATH  MathSciNet  Google Scholar 

  4. Buchstab, A. A., On those numbers in an arithmetic progression all prime factors of which are small in order of magnitude.Dokl. Akad. Nauk SSSR (N.S.), 67 (1949), 5–8.

    Google Scholar 

  5. Burgess, D. A., The distribution of quadratic residues and non-residues,Mathematika, 4 (1957), 106–112.

    MATH  MathSciNet  Google Scholar 

  6. Davenport, H.,Multiplicative Number Theory. Springer-Verlag, New York, 1980 (2nd ed.).

    MATH  Google Scholar 

  7. Daboussi, H., Sur le Théorème des Nombres Premiers.C. R. Acad. Sci. Paris, 298 (1984), 161–164.

    MATH  MathSciNet  Google Scholar 

  8. Dickman, K., On the frequency of numbers containing prime factors of a certain relative magnitude.Ark. Mat. Astr. Fys., 22 (1930), 1–14.

    Google Scholar 

  9. Elliott, P. D. T. A., Multiplicative functions on arithmetic progressions, II.Mathematika, 35 (1988), 38–50.

    MATH  MathSciNet  Google Scholar 

  10. Fouvry, E. &Tenenbaum, G., Entiers sans grand facteur premier en progressions arithmétiques.Proc. London. Math. Soc., 63 (1991), 449–494.

    MathSciNet  MATH  Google Scholar 

  11. Friedlander, J. B., Integers without large prime factors, II.Acta Arith., 39 (1981), 53–57.

    MATH  MathSciNet  Google Scholar 

  12. Halberstam, H. &Richert, H.-E.,Sieve Methods. Academic Press, New York, 1974.

    MATH  Google Scholar 

  13. Heath-Brown, D. R., Primes in “almost all” short intervals.J. London Math. Soc., 26 (1982), 385–396.

    MATH  MathSciNet  Google Scholar 

  14. Hensley, D., A property of the counting function of integers with no large prime factors.J. Number Theory, 22 (1986), 46–74.

    Article  MATH  MathSciNet  Google Scholar 

  15. Hildebrand, A., On the number of positive integers ≤x and free of large prime factors >y.J. Number. Theory, 22 (1986), 289–307.

    Article  MATH  MathSciNet  Google Scholar 

  16. —, Integers free of large prime factors and the Riemann Hypothesis.Mathematika, 31 (1984), 258–271.

    Article  MATH  MathSciNet  Google Scholar 

  17. —, On the number of prime factors of integers without large prime divisors.J. Number Theory, 25 (1987), 81–106.

    Article  MATH  MathSciNet  Google Scholar 

  18. —, Multiplicative functions on arithmetic progressions.Proc. Amer. Math. Soc., 108 (1990), 307–318.

    Article  MATH  MathSciNet  Google Scholar 

  19. Hildebrand, A. &Tenenbaum, G., On integers free of large prime factors.Trans. Amer. Math. Soc., 296 (1986), 265–290.

    Article  MathSciNet  MATH  Google Scholar 

  20. Jurkat, W. B. &Richert, H.-E., An improvement of Selberg's sieve method I.Acta Arith., 11 (1965), 217–240.

    MathSciNet  MATH  Google Scholar 

  21. Levin, B. V. &Fanleib, A. S., Application of some integral equations to problems in number theory.Uspekhi Mat. Nauk, 22(135) (1967), 119–197;Russian Math. Surveys, 22:3 (1967), 119–204.

    MATH  Google Scholar 

  22. Norton, K. K.,Numbers with Small Prime Factors and the Least k-th Power Non-Residue. Mem. Amer. Math. Soc., 106, 1971.

  23. Pomerance, C., Analysis and comparison of some integer factoring algorithms, inComputational Methods in Number Theory (H. W. Lenstra Jr. and R. Tijdeman, eds.), pp. 89–139, 1984.

  24. Rankin, R. A., The difference between consecutive prime numbers.J. London Math. Soc., 13 (1938), 242–247.

    MATH  Google Scholar 

  25. Saias, E., Sur le nombre des entiers sans grand facteur premier.J. Number Theory, 32 (1989), 78–99.

    Article  MATH  MathSciNet  Google Scholar 

  26. Selberg, A., An elementary proof of the prime number theorem for arithmetic progressions.Canad. J. Math., 2 (1950), 66–78.

    MATH  MathSciNet  Google Scholar 

  27. Tenenbaum G., La méthode du col en théorie analytique des nombres, inSéminaire de Théorie des Nombres, Paris 1986–87, pp. 411–441. Birkhäuser, Boston.

    Google Scholar 

  28. — Sur un problème d'Erdős et Alladi, inSéminaire de Théorie des Nombres, Paris 1988–89, pp. 221–239. Birkhäuser, Boston.

    Google Scholar 

  29. Vaughan, R. C., A new iterative method in Waring's problem.Acta Math., 162 (1989), 1–71.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author is supported, in part, by the National Science Foundation (grant number DMS-8610730)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granville, A. Integers, without large prime factors, in arithmetic progressions, I. Acta Math. 170, 255–273 (1993). https://doi.org/10.1007/BF02392787

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02392787

Keywords

Navigation