Skip to main content
Log in

On theT(1)-theorem for the Cauchy integral

  • Published:
Arkiv för Matematik

Abstract

The main goal of this paper is to present an alternative, real variable proof of theT(1)-theorem for the Cauchy integral. We then prove that the estimate from below of analytic capacity in terms of total Menger curvature is a direct consequence of theT(1)-theorem. An example shows that theL -BMO estimate for the Cauchy integral does not follow fromL 2 boundedness when the underlying measure is not doubling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. David, G., Opérateurs intégraux singuliers sur certaines courbes du plan complexe,Ann. Sci. École Norm. Sup. 17 (1984), 157–189.

    MATH  Google Scholar 

  2. David, G.,Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Math.1465, Springer-Verlag, Berlin-Heidelberg, 1991.

    Google Scholar 

  3. David, G., Unrectifiable 1-sets have vanishing analytic capacity,Rev. Mat. Iberoamericana 14 (1998), 369–479.

    MATH  MathSciNet  Google Scholar 

  4. David, G. andMattila, P., Removable sets for Lipschitz harmonic functions in the plane, Preprint, 1997.

  5. Garnett, J.,Analytic Capacity and Measure, Lecture Notes in Math.297, Springer-Verlag, Berlin-Heidelberg, 1972.

    Google Scholar 

  6. Journé, J.-L.,Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón, Lecture Notes in Math.994, Springer-Verlag, Berlin-Heidelberg, 1983.

    Google Scholar 

  7. Joyce, H. andMörters, P., A set with finite curvature and projections of zero length, Preprint, 1997.

  8. Léger, J.-C., Courbure de Menger et rectifiabilité, Ph. D. Thesis, Université de Paris-Sud, 1997.

  9. Mattila, P., On the analytic capacity and curvature of some Cantor sets with non-σ-finite length,Publ. Mat. 40 (1996), 127–136.

    MathSciNet  Google Scholar 

  10. Mattila, P., Melnikov, M. S. andVerdera, J., The Cauchy integral, analytic capacity and uniform rectifiability,Ann. of Math. 144 (1996), 127–136.

    MathSciNet  Google Scholar 

  11. Melnikov, M. S., Analytic capacity: discrete approach and curvature of a measure,Mat. Sb 186:6 (1995), 57–76 (Russian). English transl.:Russian Acad. Sci. Sb. Math. 186 (1995), 827–846.

    MATH  MathSciNet  Google Scholar 

  12. Melnikov, M. S. andVerdera, J., A geometric proof of theL 2 boundedness of the Cauchy integral on Lipschitz graphs,Internat. Math. Res. Notices 1995, 325–331.

  13. Nazarov, F., Treil, S. andVolberg, A., Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces,Internat. Math. Res. Notices 1997, 703–726.

  14. Nazarov, F., Treil, S. andVolberg, A., Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces,Internat. Math. Res. Notices 1998, 463–487.

  15. Stein, E. M.,Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N. J., 1993.

    Google Scholar 

  16. Tolsa, X., Cotlar's inequality without the doubling condition and existence of principal values for the Cauchy integral of measures,J. Reine Angew. Math. 502 (1998), 199–235.

    MATH  MathSciNet  Google Scholar 

  17. Tolsa, X., Curvature of measures, Cauchy singular integral and analytic capacity, Thesis, Universitat Autònoma de Barcelona, 1998.

  18. Tolsa, X.,L 2-boundedness of the Cauchy integral operator for continuous measures, to appear inDuke Math. J.

  19. Verdera, J., A weak type inequality for Cauchy transforms of finite measures,Publ. Mat. 36 (1992), 1029–1034.

    MATH  MathSciNet  Google Scholar 

  20. Verdera, J., A new elementary proof ofL 2 estimates for the Cauchy Integral on Lipschitz graphs,Manuscript from a lecture given at the Conference on Geometrical and Algebraical Aspects in Several Complex Variables (Cetraro, 1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdera, J. On theT(1)-theorem for the Cauchy integral. Ark. Mat. 38, 183–199 (2000). https://doi.org/10.1007/BF02384497

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02384497

Keywords

Navigation