Skip to main content
Log in

SENSOP: A derivative-free solver for nonlinear least squares with sensitivity scaling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Nonlinear least squares optimization is used most often in fitting a complex model to a set of data. An ordinary nonlinear least squares optimizer assumes a constant variance for all the data points. This paper presents SENSOP, a weighted nonlinear least squares optimizer, which is designed for fitting a model to a set of data where the variance may or may not be constant. It uses a variant of the Levenberg-Marquardt method to calculate the direction and the length of the step change in the parameter vector. The method for estimating appropriate weighting functions applies generally to 1-dimensional signals and can be used for higher dimensional signals. Sets of multiple tracer outflow dilution curves present special problems because the data encompass three to four orders of magnitude; a fractional power function provides appropriate weighting giving success in parameter estimation despite the wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassingthwaighte, J.B.; Ackerman, F.H.; Wood, E.H. Applications of the lagged normal density curve as a model for arterial dilution curves. Circ. Res. 18:398–415; 1966.

    CAS  PubMed  Google Scholar 

  2. Bassingthwaighte, J.B.; Wang, C.Y.; Chan, I.S. Blood-tissue exchange via transport and transformation by endothelial cells. Circ. Res. 65:997–1020; 1989.

    CAS  PubMed  Google Scholar 

  3. Bassingthwaighte, J.B.; Chan, I.S.; Wang, C.Y. Computationally efficient algorithms for capillary convection-permeation-diffusion models for blood-tissue exchange. Ann. Biomed. Eng. 20:687–725; 1992.

    Article  CAS  PubMed  Google Scholar 

  4. Box, G.E.P.; Hill, W.J. Correcting inhomogeneity of variance with power transformation weighting. Technometrics 16:385–389; 1974.

    Google Scholar 

  5. Bronikowski, T.A.; Dawson, C.A.; Linehan, J.H. Modelfree deconvolution techniques for estimating vascular transport functions. Int. J. Biomed. Comput. 14:411–429; 1983.

    Article  CAS  PubMed  Google Scholar 

  6. Dennis, J.E.; Gay, D.M.; Welsch, R.E. Algorithm 573: NL2SOL—An adaptive nonlinear least-squares algorithm. ACM TOMS 7:369–383; 1981.

    Google Scholar 

  7. Donaldson, J.R.; Schnabel, R.B. Computational experience with confidence regions and confidence intervals for nonlinear least squares. Technometrics 29:67–82; 1987.

    Google Scholar 

  8. Duncan, G.T. An empirical study of jackknife-constructed confidence regions in nonlinear regression. Technometrics 20:123–129; 1978.

    Google Scholar 

  9. Hiebert, K.L. An evaluation of mathematical software that solves nonlinear least squares problems. ACM TOMS 7:1–16; 1981.

    Google Scholar 

  10. Kroll, K.; Bukowski, T.R.; Schwartz, L.M.; Knoepfler, D.; Bassingthwaighte, J.B. Capillary endothelial transport of uric acid in the guinea pig heart. Am. J. Physiol. 262 (Heart Circ. Physiol. 31):H420-H431; 1992.

    CAS  PubMed  Google Scholar 

  11. Kuikka, J.; Levin, M.; Bassingthwaighte, J.B. Multiple tracer dilution estimates ofd- and 2-deoxy-d-glucose uptake by the heart. Am. J. Physiol. 250 (Heart Circ. Physiol. 19):H29-H42; 1986.

    CAS  PubMed  Google Scholar 

  12. Lanczos, C. Applied analysis. Englewood Cliffs, NJ: Prentice-Hall; 1956.

    Google Scholar 

  13. Levenberg, K. A method for the solution of certain problems in least squares. Quart. Appl. Math. 2:164–168; 1944.

    Google Scholar 

  14. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11:431; 1963.

    Article  Google Scholar 

  15. Moré, J.J.; Garbow, B.S.; Hillstrom, K.E. Testing unconstrained optimizer software ACM TOMS 7:17–41; 1981.

    Google Scholar 

  16. Press, S.J. Applied multivariate analysis. New York: Holt, Rinehart and Winston; 1972.

    Google Scholar 

  17. Ratkowsky, D.A. Nonlinear regression modeling: Aunified practical approach. New York: Marcel Dekker; 1983.

    Google Scholar 

  18. Wangler, R.D.; Gorman, M.W.; Wang, C.Y.; DeWitt, D.F.; Chan, I.S.; Bassingthwaighte, J.B.; Sparks, H.V. Transcapillary adenosine transport and interstitial adenosine concentration in guinea pig hearts. Am. J. Physiol. 257 (Heart Circ. Physiol. 26):H89-H106; 1989.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, I.S., Goldstein, A.A. & Bassingthwaighte, J.B. SENSOP: A derivative-free solver for nonlinear least squares with sensitivity scaling. Ann Biomed Eng 21, 621–631 (1993). https://doi.org/10.1007/BF02368642

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368642

Keywords

Navigation