Skip to main content
Log in

The discontinuous nature of electrical propagation in cardiac muscle

Consideration of a quantitative model incorporating the membrane ionic properties and structural complexities the ALZA distinguished lecture

  • The 1982 Alza Distinguished Lecture The Discontinuous Nature of Electrical Propagation in Cardiac Muscle
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The propagation of excitation in cardiac muscle has generally been treated as though it occurred in a continuous structure. However, new evidence indicates that propagation in cardiac muscle often displays a discontinuous nature. In this paper, we consider the hypothesis that this previously unrecognized type of propagation is caused by recurrent discontinuities of effective axial resistivity which affect the membrane currents. The major implication is that the combination of discontinuities of axial resistivity at several size scales can produce most currently known cardiac conduction disturbances previously thought to require spatial nonuniformities of the membrane properties. At present there is no appropriate model or simulation for propagation in anisotropic cardiac muscle. However, the recent quantitative description of the fast sodium current in voltage-clamped cardiac muscle membrane makes it possible, for the first time, to apply experimentally based quantitative membrane models to propagation in cardiac muscle. The major task now is to account for the functional role of the structural complexities of cardiac muscle. The importance of such a model is that it would establish how the membrane ionic currents and the complexities of cell and tissue structure interact to determine propagation in both normal and abnormal cardiac muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azarnia, R. and W.R. Loewenstein. Intercellular communication and tissue growth: VIII. A genetic analysis of junctional communication and cancerous growth.J. Membr. Biol. 34:1–28, 1977.

    CAS  PubMed  Google Scholar 

  2. Barr, L., M.M. Dewey, and W. Berger. Propagation of action potentials and the structure of the nexus in cardiac muscle.J. Gen. Physiol. 48:797–823, 1965.

    Article  CAS  PubMed  Google Scholar 

  3. Beeler, G.W. and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibres.J. Physiol. (Lond.) 268:177–210, 1977.

    CAS  Google Scholar 

  4. Brown, A.M., K.S. Lee, and T. Powell. Sodium current in single rat heart muscle cells.J. Physiol. (Lond.) 318:479–500, 1981.

    CAS  Google Scholar 

  5. Carafoli, E., R. Tiozzo, G. Lugli, F. Crovetti, and C. Kratzing. The release of calcium from heart mitochondria by sodium.J. Mol. Cell. Cardiol. 6:361–371, 1974.

    Article  CAS  PubMed  Google Scholar 

  6. Chapman, R.A. and C.H. Fry. An analysis of the cable properties of frog ventricular myocardium.J. Physiol. (Lond.) 283:263–282, 1978.

    CAS  Google Scholar 

  7. Chapman, J.B., J.M. Kootsey, and E.A. Johnson. A kinetic model for determining the consequences of electrogenic active transport in cardiac muscle.J. Theor. Biol. 80:405–424, 1979.

    CAS  PubMed  Google Scholar 

  8. Clark, J. and R. Plonsey. A mathematical evaluation of the core conductor model.Biophys. J. 6:95–112, 1966.

    CAS  PubMed  Google Scholar 

  9. Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart.J. Physiol. (Lond.) 255:335–346, 1976.

    CAS  Google Scholar 

  10. Colatsky, T.J. Voltage clamp measurements of sodium channel properties in rabbit cardiac Purkinje fibres.J. Physiol. (Lond.) 305:215–234, 1980.

    CAS  Google Scholar 

  11. Cole, K.S. Dynamic electrical characteristics of the squid axon membrane.Arch. Sci. Physiol. 3:253–258, 1949.

    CAS  Google Scholar 

  12. Cole, K.S. Ions, potentials, and the nerve impulse. In:Electrochemistry in Biology and Medicine, edited by T. Shedlovsky. New York: John Wiley & Sons, 1955, pp. 121–140.

    Google Scholar 

  13. Cole, K.S.Membranes, Ions and Impulses. Berkeley, Cal.: University of California Press, 1968, pp. 1–59.

    Google Scholar 

  14. Cole, K.S., H.A. Antosiewicz, and P. Rabinowitz. Automatic computation of nerve excitation.J. Soc. Indust. Appl. Math. 3:153–172, 1955.

    Article  Google Scholar 

  15. Conn, H.L. and J.C. Wood. Sodium exchange and distribution in the isolated heart of the normal dog.Am. J. Physiol. 197:631–636, 1959.

    CAS  PubMed  Google Scholar 

  16. Cooley, J.W. and F.A. Dodge, Jr. Digital computer solutions for excitation and propagation of the nerve impulse.Biophys. J. 6:583–599, 1966.

    CAS  PubMed  Google Scholar 

  17. Coraboeuf, E. Voltage clamp studies of the slow inward current. InThe Slow Inward Current and Cardiac Arrhythmias, edited by D.P. Zipes, J.C. Bailey, and V. Elharrar. The Hague: Martinus Nijhoff, 1980, pp. 25–95.

    Google Scholar 

  18. Cranefield, P.F.The Conduction of the Cardiac Impulse. The Slow Response and Cardiac Arrhythmias. Mt. Kisco, New York: Futura, 1975.

    Google Scholar 

  19. Cranefield, P.F. and F.A. Dodge. Slow conduction in the heart. InThe Slow Inward Current and Cardiac Arrhythmias, edited by D.P. Zipes, J.C. Bailey, and V. Elharrar. The Hague: Martinus Nijhoff, 1980, pp. 149–171.

    Google Scholar 

  20. Crank, J. and P. Nicolson. Practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type.Proc. Cambridge Philos. Soc. 43:50–67, 1947.

    Google Scholar 

  21. De La Fuente, D., B. Sasyniuk, and G.K. Moe. Conduction through a narrow isthmus in isolated canine atrial tissue: A model of the WPW syndrome.Circulation 44:803–809, 1971.

    PubMed  Google Scholar 

  22. Délèze, J. and W.R. Loewenstein. Permeability of a cell junction during intracellular injection of divalent cations.J. Membr. Biol. 28:71–86, 1976.

    PubMed  Google Scholar 

  23. De Mello, W.C. Intercellular communication in cardiac muscle.Circ. Res. 51:1–9, 1982.

    PubMed  Google Scholar 

  24. Diaz, P.J., Y. Rudy, and R. Plonsey. The effects of the intercalated disc on the propagation of electrical activity in cardiac muscle. Abstract.Fed. Proc. Fed. Am. Soc. Exp. Biol. 40:393, 1981.

    Google Scholar 

  25. Draper, M.H. and M. Mya-Tu. A comparison of the conduction velocity in cardiac tissues of various mammals.Q. J. Exp. Physiol. 44:91–109, 1959.

    CAS  Google Scholar 

  26. Draper, M.H. and S. Weidmann. Cardiac resting and action potentials recorded with an intracellular electrode.J. Physiol. (Lond.) 115:74–94, 1951.

    CAS  Google Scholar 

  27. Drouhard, J-P and F.A. Roberge. The simulation of repolarization events of the cardiac Purkinje fiber action potential.IEEE Trans. Biomed. Eng. 29:481–493, 1982.

    CAS  PubMed  Google Scholar 

  28. Drouhard, J-P and F.A. Roberge. A simulation study of the ventricular myocardial action potential.IEEE Trans. Biomed. Eng. 29:494–502, 1982.

    CAS  PubMed  Google Scholar 

  29. Ebihara, L. and E.A. Johnson. Fast sodium current in cardiac muscle. A quantitative description.Biophys. J. 32:779–790, 1980.

    CAS  PubMed  Google Scholar 

  30. Ebihara, L., N. Shigeto, M. Lieberman, and E.A. Johnson. The initial inward current in spherical clusters of chick embryonic heart cells.J. Gen. Physiol. 75:437–456, 1980.

    Article  CAS  PubMed  Google Scholar 

  31. Eisenberg, R.S., V. Barcilon, and R.T. Mathias. Electrical properties of spherical syncytia.Biophys. J. 25:151–180, 1979.

    CAS  PubMed  Google Scholar 

  32. Eisenberg, R.S. and R.T. Mathias. Structural analysis of electrical properties of cells and tissues.CRC Crit. Rev. Bioeng. 4:203–232, 1980.

    CAS  Google Scholar 

  33. Ellis, D. The effects of external cations and ouabain on the intracellular sodium activity of sheep heart Purkinje fibres.J. Physiol. (Lond.) 273:211–240, 1977.

    CAS  Google Scholar 

  34. Engelmann, T.W. Ueber die Leitung der Erregung im Herzmuskel.Pfluegers Arch. Gesamte Physiol. Menschen Tiere 11:465–480, 1875.

    Google Scholar 

  35. FitzHugh, R. Thresholds and plateaus in the Hodgkin-Huxley nerve equations.J. Gen. Physiol. 43:867–896, 1960.

    Article  CAS  PubMed  Google Scholar 

  36. FitzHugh, R. Mathematical models of excitation and propagation in nerve. InBiological Engineering, edited by H.P. Schwan. New York: McGraw-Hill, 1969, vol. 9, pp. 1–85.

    Google Scholar 

  37. FitzHugh, R. and H.A. Antosiewicz. Automatic computation of nerve excitation — detailed corrections and additions.J. Soc. Indust. Appl. Math. 7:447–458, 1959.

    Article  Google Scholar 

  38. Fozzard, H.A. Membrane capacity of the cardiac Purkinje fibre.J. Physiol. (Lond.) 182:255–267, 1966.

    CAS  Google Scholar 

  39. Fozzard, H. and S-S Sheu. Influence of stimulation rate on intracellular Na activity in cardiac Purkinje fibers. Abstract.Fed. Proc. Fed. Am. Soc. Exp. Biol. 40:392, 1981.

    Google Scholar 

  40. Freygang, W.H. and W. Trautwein. The structural implictions of the linear electrical properties of cardiac Purkinje strands.J. Gen. Physiol. 55:524–547, 1970.

    Article  CAS  PubMed  Google Scholar 

  41. Gerald, C.F.Applied Numerical Analysis. Reading, Mass.: Addison-Wesley Publishing Co, 1970, pp. 250–288.

    Google Scholar 

  42. Glitsch, H.D., H. Reuter, and H. Scholtz. The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles.J. Physiol. (Lond.) 209:25–43, 1970.

    CAS  Google Scholar 

  43. Goldstein, S.S. and W. Rall. Changes of action potential shape and velocity for changing core conductor geometry.Biophys. J. 14:731–757, 1974.

    CAS  PubMed  Google Scholar 

  44. Hayashi, H., S. Yamagishi, and T. Kanno. Conducting pathway dependency of the rate of rise of the cardiac action potential. Abstract.Nippon Seirigaku Zasshi 22:292, 1960.

    Google Scholar 

  45. Hellman, D.C. and J.W. Studt. A core-conductor model of the cardiac Purkinje fibre based on structural analysis.J. Physiol. (Lond.) 243:637–660, 1974.

    Google Scholar 

  46. Hermann, L. Allgemeine Nervenphysiologie. InHandbuch der Physiologie, edited by L. Hermann. Leipzig: Vogel, 2:1–196, 1879.

    Google Scholar 

  47. Hodgkin, A.L. A note on conduction velocity.J. Physiol. (Lond.) 125:221–224, 1954.

    CAS  Google Scholar 

  48. Hodgkin, A.L. and A.F. Huxley. Currents carried by sodium and potassium ions through the membrane of the giant axon ofLoligo.J. Physiol. (Lond.) 116:449–472, 1952.

    CAS  Google Scholar 

  49. Hodgkin, A.L. and A.F. Huxley. The components of membrane conductance in the giant axon ofLoligo.J. Physiol. (Lond.) 116:473–496, 1952.

    CAS  Google Scholar 

  50. Hodgkin, A.L. and A.F. Huxley. The dual effect of membrane potential on sodium conductance in the giant axon ofLoligo.J. Physiol. (Lond.) 116:497–506, 1952.

    CAS  Google Scholar 

  51. Hodgkin, A.L. and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (Lond.) 117:500–544, 1952.

    CAS  Google Scholar 

  52. Hodgkin, A.L., A.F. Huxley, and B. Katz. Ionic currents underlying activity in the giant axon of the squid.Arch. Sci. Physiol. 3:129–150, 1949.

    CAS  Google Scholar 

  53. Hodgkin, A.L. and B. Katz. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (Lond.) 108:37–77, 1949.

    Google Scholar 

  54. Hodgkin, A.L. and W.A.H. Rushton. The electrical constants of a crustacean nerve fibre.Proc. R. Soc. Lond. [Biol.] 133:444–479, 1946.

    Google Scholar 

  55. Hoffman, B.F. and P.F. Cranefield.Electrophysiology of the Heart. New York: McGraw-Hill, 1960, pp. 259–260.

    Google Scholar 

  56. Hogan, P.M. and L.D. Davis. Evidence for specialized fibers in the canine right atrium.Circ. Res. 23:387–396, 1968.

    CAS  PubMed  Google Scholar 

  57. Hondeghem, L.M. Validity of\(\dot V_{max} \) as a measure of the sodium current in cardiac and nervous tissues.Biophys. J. 23:147–152, 1978.

    CAS  PubMed  Google Scholar 

  58. Hunter, P.J., P.A. McNaughton, and D. Noble. Analytical models of propagation in excitable cells.Prog. Biophys. Mol. Biol. 30:99–144, 1975.

    CAS  PubMed  Google Scholar 

  59. Jack, J.J.B., D. Noble, and R.W. Tsien.Electric Current Flow in Excitable Cells. Oxford: Clarendon Press, 1975, pp. 25–304.

    Google Scholar 

  60. James, T.N. and L. Sherf. Specialized tissues and preferential conduction in the atria of the heart.Am. J. Cardiol. 28:414–427, 1971.

    Article  CAS  PubMed  Google Scholar 

  61. Johnson, E.A., Chapman, J.B., and J.M. Kootsey. Some electrophysiological consequences of electrogenic sodium and potassium transport in cardiac muscle: A theoretical study.J. Theor. Biol. 87:737–756, 1980.

    Article  CAS  PubMed  Google Scholar 

  62. Johnson, E.A. and M. Lieberman. Heart: excitation and contraction.Annu. Rev. Physiol. 33:479–532, 1971.

    Article  CAS  PubMed  Google Scholar 

  63. Johnston, M.F. and F. Rámon. Electrotonic coupling in internally perfused crayfish segmented axons.J. Physiol. (Lond.) 317:509–518, 1981.

    CAS  Google Scholar 

  64. Johnston, M.F. and F. Rámon. Voltage independence of an electrotonic synapse.Biophys. J. 39:115–117, 1982.

    CAS  PubMed  Google Scholar 

  65. Joyner, R.W. Effects of the discrete pattern of electrical coupling on propagation through an electrical syncytium.Circ. Res. 50:192–200, 1982.

    CAS  PubMed  Google Scholar 

  66. Joyner, R.W., M. Westerfield, J.W. Moore, and N. Stockbridge. A numerical method to model excitable cells.Biophys. J. 22:155–170, 1978.

    CAS  PubMed  Google Scholar 

  67. Kanno, T. The heterogeneous structure of the specialized tissue in the heart as a factor in atrioventricular conduction delay.Jpn. J. Physiol. 20:417–434, 1970.

    CAS  PubMed  Google Scholar 

  68. Karagueuzian, H.S., J.J. Fenoglio, Jr., M.B. Weiss, and A.L. Wit. Protracted ventricular tachycardia induced by premature stimulation of the canine heart after coronary artery occlusion and reperfusion.Circ. Res. 44:833–846, 1979.

    CAS  PubMed  Google Scholar 

  69. Kass, R.S., S.A. Siegelbaum, and R.W. Tsien. Three-microelectrode voltage clamp experiments in calf cardiac Purkinje fibres: Is slow inward current adequately measured?J. Physiol. (Lond.) 290:201–225, 1979.

    CAS  Google Scholar 

  70. Khodorov, B.I.The Problem of Excitability. Electrical Excitability and Ionic Permeability of the Nerve Membrane. New York: Plenum Press, 1972, pp. 213–255.

    Google Scholar 

  71. Khodorov, B.I. Sodium inactivation and drug-induced immobilization of the gating charge in nerve membrane.Prog. Biophys. Mol. Biol. 37:49–89, 1981.

    CAS  PubMed  Google Scholar 

  72. Khodorov, B.I. and E.N. Timin. Nerve impulse propagation along nonuniform fibres (investigations using mathematical models).Prog. Biophys. Mol. Biol. 30:145–184, 1975.

    CAS  PubMed  Google Scholar 

  73. Khodorov, B.I., E.N. Timin, S.A. Vilenkin, and F.B. Gul'ko. Theoretical analysis of the mechanisms of conduction of a nerve pulse over an inhomogeneous axon. I. Conduction through a portion with increased diameter.Biophysics (Eng. Transl.Biofizika) 14:323–335, 1969.

    Google Scholar 

  74. Khodorov, B.I., E.N. Timin, S.A. Vilenkin, and F.B. Gul'ko. Theoretical analysis of the mechanisms of conduction of a nerve impulse along an inhomogeneous axon. II. Conduction of a single impulse across a region of the fibre with modified functional properties.Biophysics (Eng. Transl.Biofizika) 15:145–152, 1970.

    Google Scholar 

  75. Kootsey, J.M. Voltage clamp simulation.Fed. Proc. Fed. Am. Soc. Exp. Biol. 34:1343–1349, 1975.

    CAS  Google Scholar 

  76. Langer, G.A. Sodium exchange in dog ventricular muscle. Relation to frequencyof contraction and its possible role in the control of myocardial contractility.J. Gen. Physiol. 50:1221–1239, 1967.

    Article  CAS  PubMed  Google Scholar 

  77. Langer, G.A. and S.D. Serena. Effects of strophanthidin upon contraction and ionic exchange in rabbit ventricular myocardium: Relation to control of active state.J. Mol. Cell. Cardiol. 1:65–90, 1970.

    CAS  PubMed  Google Scholar 

  78. Lewis, T. and A.M. Master. Observations upon conduction in the mammalian heart. A-V conduction.Heart 12:209–269, 1925.

    Google Scholar 

  79. Lewis, T., J. Meakins, and P.D. White. The excitatory process in the dog's heart. Part. I. The auricles.Philos. Trans. Roy. Soc. London 205:375–420, 1914.

    Google Scholar 

  80. Lieberman, M., T. Sawanobori, J.M. Kootsey, and E.A. Johnson. A synthetic strand of cardiac muscle. Its passive electrical properties.J. Gen. Physiol. 65:527–550, 1975.

    Article  CAS  PubMed  Google Scholar 

  81. Loewenstein, W.R. Permeability of membrane junctions.Ann. NY Acad. Sci. 137:441–472, 1966.

    CAS  PubMed  Google Scholar 

  82. Mathias, R.T., J.L. Rae, and R.S. Eisenberg. The lens as a nonuniform spherical syncytium.Biophys. J. 34:61–83, 1981.

    CAS  PubMed  Google Scholar 

  83. Mayr, E. Evolution.Sci. Am. 239:47–55, 1978.

    Google Scholar 

  84. McAllister, R.E., D. Noble, and R.W. Tsien. Reconstruction of the electrical activity of cardiac Purkinje fibres.J. Physiol. (Lond.) 251:1–59, 1975.

    CAS  Google Scholar 

  85. McNutt, N.S. and R.S. Weinstein. The ultrastructure of the nexus. A correlated thin-section and freezecleave study.J. Cell Biol. 47:666–688, 1970.

    Article  CAS  PubMed  Google Scholar 

  86. Mendez, C., W.J. Mueller, and X. Urguiaga. Propagation of impulses across the Purkinje fiber-muscle junctions in the dog heart.Circ. Res. 26:135–150, 1970.

    CAS  PubMed  Google Scholar 

  87. Meves, H. Inactivation of the sodium permeability in squid giant nerve fibres.Prog. Biophys. Mol. Biol. 33:207–230, 1978.

    CAS  PubMed  Google Scholar 

  88. Muir, A.R. An electron microscope study of the embryology of the intercalated disc in the heart of the rabbit.J. Biophys. Biochem. Cytol. 3:193–202, 1957.

    CAS  PubMed  Google Scholar 

  89. Muir, A.R. Further observations on the cellular structure of cardiac muscle.J. Anat. (Lond.) 99:27–46, 1965.

    CAS  Google Scholar 

  90. Noble, D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations.Nature 188:495–497, 1960.

    CAS  Google Scholar 

  91. Noble, D. Computed action potentials and their experimental basis.Excerpta Med. Int. Congr. Ser. 47:177–182, 1962.

    Google Scholar 

  92. Noble, D. Applications of Hodgkin-Huxley equations to excitable tissues.Physiol. Rev. 46:1–50, 1966.

    CAS  PubMed  Google Scholar 

  93. Paes de Carvalho, A., E.A.C. Garcia, and T.A. Saldëna. Phase-plane analysis of propagated electrical activity in muscle cells.Pontif. Accad. Sci. Scr. Var. 40:153–174, 1976.

    Google Scholar 

  94. Pastushenko, V.F., V.S. Markin, and Y.A. Chizmadzhev. Propagation of excitation in a model of the inhomogeneous nerve fibre. III. Interaction of pulses in the region of the branching node of anerve fibre.Biophsics 14:929–937, 1969.

    Google Scholar 

  95. Reber, W.R. and R. Weingart. Ungulate cardiac Purkinje fibres: The influence of intracellular pH on the electrical cell-to-cell coupling.J. Physiol. (Lond.) 328:87–104, 1982.

    CAS  Google Scholar 

  96. Reuter, H. Properties of two inward membrane currents in the heart.Annu. Rev. Physiol. 41:413–424, 1979.

    Article  CAS  PubMed  Google Scholar 

  97. Reuter, H. and N. Seitz. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition.J. Physiol. (Lond.) 195:451–470, 1968.

    CAS  Google Scholar 

  98. Ruffner, J.A., N. Sperelakis, and J.E. Mann, Jr. Application of the Hodgkin-Huxley equations to an electric field model for interaction between excitable cells.J. Theor. Biol. 87:129–152, 1980.

    Article  CAS  PubMed  Google Scholar 

  99. Sachs, F. and P. Specht. Sodium currents in single cardiac Purkinje cells. Abstract.Biophys. J. 33: 121a, 1981.

    Google Scholar 

  100. Sano, T., N. Takayama, and T. Shimamoto. Directional difference of conduction velocity in cardiac ventricular syncytium studied by microelectrodes.Circ. Res. 7:262–267, 1959.

    CAS  PubMed  Google Scholar 

  101. Sharp, G.H. and R.W. Joyner. Simulated propagation of cardiac action potentials.Biophys. J. 31:403–423, 1980.

    CAS  PubMed  Google Scholar 

  102. Singer, D.H., R. Lazzara, and B.F. Hoffman. Interrelationships between automaticity and conduction in Purkinje fibers.Circ. Res. 21:537–558, 1967.

    CAS  PubMed  Google Scholar 

  103. Sjöstrand, F.S., and E. Andersson. Electron microscopy of the intercalated disc of cardiac muscle tissue.Experientia 10:369–370, 1954.

    PubMed  Google Scholar 

  104. Socolar, S.J. The coupling coefficient as an index of junctional conductance.J. Membr. Biol. 34:29–37, 1977.

    CAS  PubMed  Google Scholar 

  105. Sommer, J.R. and P.C. Dolber. Cardiac Muscle: The ultrastructure of its cells and bundles. InNormal and Abnormal Conduction of the Heart Beat, edited by A. Paes de Carvalho, B.F. Hoffman, and M. Lieberman. Mt. Kisco. N.Y.: Futura 1982, pp. 1–27.

    Google Scholar 

  106. Sommer, J.R. and E.A. Johnson. Ultrastructure of cardiac muscle. InHandbook of Physiology, sec 2, Vol I, the Heart, edited by R.M. Berne, N. Sperelakis, and S.R. Geiger. Bethesda: American Physiological Society, 1979, pp. 113–186.

    Google Scholar 

  107. Spach, M.S. The electrical representation of cardiac muscle based on discontinuities of axial resistivity at a microscopic and macroscopic level. A basis for saltatory propagation in cardiac muscle. In:Normal and Abnormal Conduction of the Heart Beat, edited by A. Paes de Carvalho, B.F. Hoffman, and M. Lieberman. Mt. Kisco, N.Y.: Futura, 1982, pp. 145–178.

    Google Scholar 

  108. Spach, M.S. and J.M. Kootsey. The nature of electrical propagation in cardiac muscle.Am. J. Physiol. 244 (Heart Circ. Physiol. 13):H3-H22, 1983.

    CAS  PubMed  Google Scholar 

  109. Spach, M.S., J.M. Kootsey, and J.D. Sloan. Active modulation of electrical coupling between cardiac cells of the dog. A mechanism for transient and steady state variations in conduction velocity.Circ. Res. 51:347–362, 1982.

    CAS  PubMed  Google Scholar 

  110. Spach, M.S., W.T. Miller III, P.C. Dolber, J.M. Kootsey, J.R. Sommer, and C.E. Mosher, Jr. The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity.Circ. Res. 50:175–191, 1982.

    CAS  PubMed  Google Scholar 

  111. Spach, M.S., W.T. Miller III, D.B. Geselowitz, R.C. Barr, J.M. Kootsey, and E.A. Johnson. The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents.Circ. Res. 48:39–54, 1981.

    CAS  PubMed  Google Scholar 

  112. Spach, M.S., W.T. Miller III, E. Miller-Jones, R.B. Warren, and R.C. Barr. Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle.Circ. Res. 45:188–204, 1979.

    CAS  PubMed  Google Scholar 

  113. Sperelakis, N. and R.L. MacDonald. Ratio of transverse to longitudinal resistivities of isolated cardiac muscle fiber bundles.J. Electrocardiol. 7:301–314, 1974.

    CAS  PubMed  Google Scholar 

  114. Sperelakis, N. and J.E. Mann, Jr. Evaluation of electric field changes in the cleft between excitable cells.J. Theor. Biol. 64:71–96, 1977.

    Article  CAS  PubMed  Google Scholar 

  115. Spray, D.C., A.L. Harris, and M.V.L. Bennett. Voltage dependence of junctional conductance in early amphibian embryos.Science 204:432–434, 1979.

    CAS  PubMed  Google Scholar 

  116. Spray, D.C., A.L. Harris, and M.V.L. Bennett. Equilibrium properties of a voltage-dependent junctional conductance.J. Gen. Physiol. 77:77–93, 1981.

    Article  CAS  PubMed  Google Scholar 

  117. Stämpfli, R. Saltatory conduction in nerve.Physiol. Rev. 34:101–112, 1954.

    PubMed  Google Scholar 

  118. Strichartz, G. and I. Cohen.\(\dot V_{max} \) as a measure of\(\bar g_{Na} \) in nerve and cardiac membranes.Biophys. J. 23:153–156, 1978.

    CAS  PubMed  Google Scholar 

  119. Tasaki, I. and S. Hagiwara. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride.J. Gen. Physiol. 40:859–885, 1957.

    Article  CAS  PubMed  Google Scholar 

  120. Taylor, R.E. Cable theory. InPhysical Techniques in Biological Research, edited by W.L. Nastuk. New York: Academic Press, 1963, vol. 6, pp. 219–262.

    Google Scholar 

  121. Thomson, W. On the theory of the electric telegraph. [From theProc. Royal Soc., May, 1855] InMathematical and Physical Papers, Vol. 2, by Sir William Thomson (Lord Kelvin). Cambridge: University Press, 1884, pp. 61–76.

    Google Scholar 

  122. Tsuboi, N., T. Furuta, I. Kodama, J. Toyama, and K. Yamada. Anisotropic conduction properties on canine ventricular muscles under high extracellular potassium concentration. Environmental Medicine 26:95–100, 1982.

    Google Scholar 

  123. Van Breemen, V.L. Intercalated dises in heart muscle studied with the electron microscope.Anat. Rec. 117:49–63, 1953.

    Google Scholar 

  124. Van Capelle, F.J.L. and M.J. Janse. Influence of geometry on the shape of the propagated action potential. InThe Conduction System of the Heart, edited by H.J.J. Wellens, K.I. Lie, and M.J. Janse. Philadelphia, Lea and Febiger, 1976, pp. 316–335.

    Google Scholar 

  125. Viersma, J.W. Hartfrequentie en impulsgeleiding in het atrium. Ph.D. thesis. Amsterdam: Drukkerij Cloeck en Moedigh N.V., 1969.

    Google Scholar 

  126. Wagner, M.L., R. Lazzara, R.M. Weiss, and B.F. Hoffman. Specialized conducting fibers in the interatrial band.Circ. Res. 18:502–518, 1966.

    CAS  PubMed  Google Scholar 

  127. Watanabe, Y. Modification of the maximal rate of phase 0 depolarization (\(\dot V_{max} \)) in single myocardial cells by the direction of the spread of excitation. Abstract.J. Mol. Cell. Cardiol. 9 (Supp. 11):37, 1977.

    Google Scholar 

  128. Waxman, S.G. Determinants of conduction velocity in myelinated nerve fibers.Muscle Nerve 3:141–150, 1980.

    Article  CAS  PubMed  Google Scholar 

  129. Weidmann, S. The electrical constants of Purkinje fibres.J. Physiol. (Lond.) 118:348–360, 1952.

    CAS  Google Scholar 

  130. Weidmann, S. The effect of the cardiac membrane potential on the rapid availability of the sodiumcarrying system.J. Physiol. (Lond.) 127:213–224, 1955.

    CAS  Google Scholar 

  131. Weidmann, S. The functional significance of the intercalated disks. InElectrophysiology of the Heart, edited by B. Taccardi and G. Marchetti. Oxford: Pergamon Press, 1965, pp. 149–152.

    Google Scholar 

  132. Weidmann, S. Electrical constants of trabecular muscle from mammalian heart.J. Physiol. (Lond.) 210:1041–1054, 1970.

    CAS  Google Scholar 

  133. Woodbury, J.W. and W.E. Crill. On the problem of impulse conduction in the atrium. InNervous Inhibition, edited by E. Florey. New York: Pergamon Press, 1965, pp. 124–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spach, M.S. The discontinuous nature of electrical propagation in cardiac muscle. Ann Biomed Eng 11, 208–261 (1983). https://doi.org/10.1007/BF02363287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02363287

Keywords

Navigation