Skip to main content
Log in

Modelling the sampling volume for skin blood oxygenation measurements

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The absolute quantified measurement of haemoglobin skin blood saturation from collected reflectance spectra of the skin is complicated by the fact that the blood content of tissues can vary both in the spatial distribution and in the amount. These measurements require an understanding of which vascular bed is primarily responsible for the detected signal. Knowing the spatial detector depth sensitivity makes it possible to find the best range of different probe geometries for the measurements of signal from the required zones and group of vessels inside the skin. To facilitate this, a Monte Carlo simulation has been developed to estimate the sampling volume offered by fibre-optic probes with a small source-detector spacing (in the current report 250 μm, 400 μm and 800 μm). The optical properties of the modelled medium are taken to be the optical properties of the Caucasian type of skin tissue in the visible range of the spectrum. It is shown that, for a small source-detector separation (800 μm and smaller), rough boundaries between layers of different refractive index can play a significant role in skin optics. Wavy layer interfaces produce a deeper and more homogeneous distribution of photons within the skin and tend to suppress the direct channelling of photons from source to detector. The model predicts that a probe spacing of 250 μm samples primarily epidermal layers and papillary dermis, whereas spacings of 400–800 μm sample upper blood net dermis and dermis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. R., andParrish, J. A. (1982): ‘Optical properties of human skin’ inRegan, J. D., andParish, J. A. (Eds): ‘The science of photomedicine’ (Pergamon Press, New York), pp. 147–194

    Google Scholar 

  • Arridge, S. (1995): ‘Photon-measurement density functions. Part I: Analytical forms’,Appl. Opt. 34, pp. 7395–7409

    Google Scholar 

  • Born, M., andWolf, E. (1986): ‘Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 6th edn’ (Pergamon Press)

  • Cashwell, E. D., andEverett, C. J. (1959): ‘A practical manual on the Monte Carlo method for random walk problems’ (Pergamon Press, London)

    Google Scholar 

  • Chance, B. (1954): ‘Spectrophotometry of intracellular respiratory pigments’,Science,120, pp. 767–775

    Google Scholar 

  • Cheong, W. F., Prahl, S. A., andWelch, A. J., (1990): A review of the optical properties of biological tissues’,IEEE J. Quantum Electron.,26, pp. 2166–2185

    Article  Google Scholar 

  • Corcuff, P., Bertrand, C., andLeveque, J. L. (1993): ‘Morphometry of human epidermisin vivo by real-time confocal microscopy’,Arch. Dermatol. Res.,285, pp. 475–481

    Article  Google Scholar 

  • De Mul, F. F., Koelink, M. H., Kok, M. L., Harmsma, P. J., Greve, J., Graaff, R., andAarnoudse, J. G. (1995): ‘Laser Doppler velocimetry and Monte Carlo simulation on models for blood perfusion in tissue’,Appl. Opt.,34, pp. 6595–6611

    Google Scholar 

  • Doornbos, R. M. P., Lang, R., Aalders, M. C., Cross, F. M., andSterenborg, H. J. C. M. (1999): ‘The determination ofin vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy’,Phys. Med. Biol. 44, pp. 967–981

    Article  Google Scholar 

  • Duck, F. A. (1990): ‘Physical properties of tissue’ (Academic Press, San Diego), pp. 43–71

    Google Scholar 

  • Feather, J. W., Dawson, J. B., Barker, D. J., andCotterill, J. A. (1981): ‘A theoretical and experimental study of optical properties ofin vivo skin’ inMarks, R., andPayne, P. A. (Eds): ‘Bioengineering and the skin’ (MTP, Lancaster), pp. 275–281

    Google Scholar 

  • Hanna, G. B., Newton, D. J., Harrison, D. K., Belch, J. J. F., andMcCollum, P. T. (1995): ‘Use of lightguide spectrophotometry to quantify skin oxygenation in variable model of venous hypertension’,Br. J. Surg.,82, pp. 1352–1356

    Google Scholar 

  • Hiraoka, M., Fibrank, M., Essenpreis, M., Cope, M., Arridge, S. R., Van Der Zee, P., andDelpy, D. T. (1993): ‘A Monte Carlo investigation of optical pathlength in homogeneous tissue and its application to near-infrared spectroscopy’,Phys. Med. Biol.,38, pp. 1859–1876

    Article  Google Scholar 

  • Holbrook, K. A. (1991): ‘Structure and functions of the developing human skin’in Goldsmith, L. A. (Ed.): ‘Physiology, biochemistry, and molecular biology of the skin’ (Oxford University Press, Oxford),1, pp. 63–112

    Google Scholar 

  • Jacques, S. L., andWang, L. (1995): ‘Monte Carlo modeling of light transport in tissues’in Welch, A. J. andvan Gemert, M. J. C. (Eds): ‘Optical-thermal response of laser-irradiated tissues’ (Plenum Press, New York), pp. 73–100

    Google Scholar 

  • Jakobsson, A., andNilsson, G. E. (1993): ‘Prediction of sampling depth and photon pathlength in laser Doppler flowmetry’,Med. Biol. Eng. Comput.,31, pp. 301–307

    Google Scholar 

  • Kienle, A., Lilge, L., Patterson, M. S., Hibst, R., Steiner, R., andWilson, B. C. (1996): ‘Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue’,Appl. Opt.,35, pp. 2304–2314

    Google Scholar 

  • Maibach, H. T., andLowe, N. L. (1987): ‘Models in dermatology’ (Karger, New York)

    Google Scholar 

  • Meier, R. R., Lee, J.-S., andAnderson, D. E. (1978): ‘Atmospheric scattering of middle uv radiation from an internal source’,Appl. Opt.,17, pp. 3216–3225

    Google Scholar 

  • Nilsson, H., andNilsson, G. E. (1998). ‘Monte Carlo simulations of the light interaction with blood vessels in human skin in the red wavelength region’,Proc. SPIE,3252, pp. 44–53

    Google Scholar 

  • Odland, G. F. (1991): ‘Structure of the skin’in Goldsmith, L. A. (Ed.): ‘Physiology, biochemistry, and molecular biology of the skin’ (Oxford University Press, Oxford),1, pp. 3–62

    Google Scholar 

  • Okada, E., Firbank, M., Schweiger, M., Arridge, S. R., Cope, M., andDelpy, D. T. (1997): ‘Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head’,Appl. Opt.,36, pp. 21–31

    Google Scholar 

  • Prahl, S. A., Keijzer, M., Jacques, S. L., andWelch, A. J. (1989): ‘A Monte Carlo model of light propagation in tissue’,SPIE Inst. Series,IS 5, pp. 102–111

    Google Scholar 

  • Rajadhyaksha, M., andZavislan, J. M. (1998): ‘Confocal reflectance microscopy of unstained tissuein vivo’,Clin. Exp. Techniques,14, pp. 26–30

    Google Scholar 

  • Ryan, T. J. (1991): ‘Cutaneous circulation’ inGoldsmith, L. A. (Ed.): ‘Physiology, biochemistry, and molecular biology of the skin’ (Oxford University Press, Oxford),2, pp. 1019–1084

    Google Scholar 

  • Schmitt, J. M., andKumar, G. (1998): ‘Optical scattering properies of soft tissue: a discrete particle model’,Appl. Opt.,37, pp. 2788–2797

    Google Scholar 

  • Serup, J., andJemec, G. B. E. (Eds) (1995): ‘Skin surface contour evaluation’ in ‘Non-invasive methods and the skin’ (CRC Press, Inc., Boca Raton), chap. 5, pp. 83–131

    Google Scholar 

  • Sheuplein, R. J. (1964): ‘A survey of some fundamental aspects of the absorption and reflection of light by tissues’,J. Soc. Cosmet. Chem.,15, pp. 155–156

    Google Scholar 

  • Simpson, C. R., Kohl, M., Essenpreis, M., andCope, M. (1998): ‘Near-infrared optical properties ofex vivo human skin and subcutaneous tissues measured using the Monte Carlo investion technique’,Phys. Med. Biol.,43, pp. 2465–2478

    Article  Google Scholar 

  • Sliney, D., andWolbarsht, M. (1980): ‘Optical radiation hazards to the skin’, in ‘Safety with lasers and others optical sources. A comprehensive handbook’ (Plenum Press, New York), pp. 161–185

    Google Scholar 

  • Stenn, K. S. (1988): ‘The skin’in Weiss, L. (Ed.): ‘Cell and tissue biology’, (Urban & Shwarzenberg, Baltimore), pp. 541–572

    Google Scholar 

  • Tuchin, V. V., Utz, S. R., andYaroslawvsky, I. V. (1994): ‘Tissue optics, light distribution, and spectroscopy’,Opt. Eng.,33, pp. 3178–3188

    Article  Google Scholar 

  • Tuchin, V. V. (1998): ‘Lasers and fiber optics in biomedical investigations (in Russian)’ (Saratov State University Press, Saratov)

    Google Scholar 

  • Van Der Zee, P. (1992): ‘Measurement and modeling of the optical properties of human tissue in the near infrared’. PhD dissertation, University of London, p. 313

  • Wang, L., Jacques, S. L., andZheng, L. (1995): ‘MCML—Monte Carlo modeling of light transport in multi-layered tissues’,Comput. Methods Programs Biomed.,47, pp. 131–146

    Article  Google Scholar 

  • Yoo, K. M., Liu, F., andAlfano, R. R. (1990): ‘When does the diffusion approximation fail to describe photon transport in random media?’,Phys. Rev. Lett.,64, pp. 2647–2650

    Article  Google Scholar 

  • Young, A. R. (1997): ‘Chromophores in human skin’,Phys. Med. Biol.,42, pp. 789–802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meglinsky, I.V., Matcher, S.J. Modelling the sampling volume for skin blood oxygenation measurements. Med. Biol. Eng. Comput. 39, 44–50 (2001). https://doi.org/10.1007/BF02345265

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345265

Keywords

Navigation