Skip to main content
Log in

Biomechanical analysis ofPitus dayi: Early seed plant vegetative morphology and its implications on growth habit

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

A biomechanical method to distinguish self-supporting and non self-supporting growth habits is applied to exceptionally preserved “twigs” ofPitus dayi Gordon. The analysis investigates whether these isolated stem segments are consistent with a self-supporting tree-like habit as suggested by the stumps, trunks and branches of the genusPitus Witham preserved more commonly in the fossil record. Because of difficulties in accurately identifying certain fossil tissues, three centrisymmetrical models were constructed to test a range of possible tissue combinations over five ontogenetic stages. The results suggest a self-supporting habit with trends in mechanical parameters during ontogeny similar to those of extant, self-supporting plants. Less explicitly constrained to the analysis of habit, the investigation also examines the structural significance of specific tissues during ontogeny as observed from contributions of individual tissues to cross-sectional area, axial second moment of area and flexural stiffness.Pitus dayl produced a physiologically “cheap” primary cauline cortex which was rapidly replaced by the development of a rhytidome. A mechanically significant, cauline hypoderm comprising thickwalled sclerenchymatous tissue is absent. This arrangement differs from other tested Palaeozoic pteridosperms interpreted as semi-self-supporting such asLyginopteris oldhamia andCalamopitys sp. in which the primary cortex is mechanically significant and secondary growth of the wood does not reach mechanically significant thresholds within the primary body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, H.N. 1945. Contributions to our knowledge of American Carboniferous floras. VII. Some pteridosperm stems from Iowa. Ann. Mis. Bot. Gard.32: 323–360.

    Google Scholar 

  • Archer, R.R. andWilson, B.F. 1970. Mechanics of the compression wood response. Plant. Physiol.46: 550–556.

    Google Scholar 

  • Bateman, R.M. 1992. Morphometric reconstruction, palaeobiology and phylogeny ofOxroadia gracilis Alvin Emend. andO. conferta sp. nov.: Anatomicallypreserved rhizomorphic lycopsids from the Dinantian of Oxroad Bay, SE Scotland. Palaeontographica B228: 29–103.

    Google Scholar 

  • Bateman, R.M. andDiMichele, W.A. 1991.Hizemodendron, gen. nov., a Pseudoherbaceous segregate of Lepidodendron (Pennsylvanian): Phylogenetic context for evolutionary changes in lycopsid growth architecture. Syst. bot.16: 195–201.

    Google Scholar 

  • Bateman, R.M., DiMichele, W.A. andWillard, D.A. 1992. Experimental cladistic analysis of anatomically preserved arborescent lycopsids from the Carboniferous of Euramerica: an essay on paleobotanical phylogenetics. Ann. Miss. Bot. Gard.79: 500–559.

    Google Scholar 

  • Batenberg, L.H. 1981. Vegetative anatomy and ecology ofSphenophyllum zwickaviense, S. emarginatum, and other “compression species” ofSphenophyllum. Rev. Paleobot. Palynol.32: 275–313.

    Google Scholar 

  • Baxter, R.W. 1949. Some pteridospermous stems and fructifications with particular reference to the Medullosae. Ann. Miss. Bot. Gard.36: 287–352.

    Google Scholar 

  • Bertram, U. 1989. Untersuchungen an coal balls aus dem Namur A von Ostrau unter spezieller Berücksichtigung der GattungenHeterangium, Lyginopteris undMicrospermopteris. Palaeontographica B214: 125–224.

    Google Scholar 

  • Blanc-Louvel, C. 1966. Etude anatomique comparée des tiges et des pétioles d'une ptéridospermée du Carbonifère du genreLyginopteris Potoni S.C. Moires du Musm National dHistoire Naturelle Sciences de la Terre18: 1–103.

    Google Scholar 

  • Brüchert, F., Bogenrieder, A. and Speck, T. 1994. in press. Anatomischer und biomechanischer vergleich der Sprossachsen vonAlnus viridis (Chaix.) DC. aus dem Schwarzwald und den Lechtaler Alpen mit Stocksschlägen vonAlnus glutinosa (L.) Gaertn. aus dem Schwarzwald im Hinblick auf die Standortsökologie beider Arten. Bereicht Naturforsch Ges. Freiburg im Breisgau81.

  • Day, J.B.W. 1970. Geology of the country around Bewcastle.In Memoires of the Geological Survey of Great Britain (pp. 95–99). London, H.M.S.O.

    Google Scholar 

  • Delevoryas, T. 1955. The Medullosae-Structure and relationships. Palaeontographica B97: 114–167.

    Google Scholar 

  • Delevoryas, T. andMorgan, J. 1954. A new pteridosperm from Upper Ponnsylvanian deposits of North America. Palaeontographica B96: 12–23.

    Google Scholar 

  • DiMichele, W.A. andBateman, R.M. 1992. Diaphorodendraceae, fam. nov. (Lycopsida: Carboniferous): systematics and evolutionary relationships ofDiaphorodendron andSynchysidendron, gen. nov. Amer. J. Bot.79: 605–617.

    Google Scholar 

  • Esau, K. 1977. Anatomy of Seed Plants. (second ed.) John Wiley, New York, pp. 1–550.

    Google Scholar 

  • Galtier, J. 1975. Variabilité anatomique et ramification des tiges deCalamopitys. Compt. rend. Hebd. séances Acad. sci.280: 1967–1970.

    Google Scholar 

  • Galtier, J. 1988. Morphology and phylogenetic relationships of early pteridosperms.In C.B. Beck ed., Origin and Evolution of Gymnosperms, Columbia University Press, New York. pp. 135–176.

    Google Scholar 

  • Galtier, J. 1992. On the earliest arborescent gymnosperms. Cour. Forsch. Senckenberg147: 119–125.

    Google Scholar 

  • Galtier, J., Brown R.E., Scott, A.C., Rex, G.M. andRowe, N.P. 1993. A late Dinantian flora from Weaklaw, East Lothian, Scotland. Spec. pap. Palaeontology49: 57–74.

    Google Scholar 

  • Gensel, P.G. andAndrews, H.N. 1984. Plant Life in the Devonian. Praeger, New York. pp. 1–380.

    Google Scholar 

  • Gibson, L.J., Ashby, M.F. andEasterling, K.E. 1988. Structure and mechanics of the iris leaf. J. Mat. Sci.23: 3041–3048.

    Google Scholar 

  • Gordon, W.T. 1935. The genusPitys, Witham, emend. Trans. Roy. Soc. Edin.58: 279–311.

    Google Scholar 

  • Grand Eury, C. 1877. Flore Carbonifère du département de la Loire et du Centre de La France. Mem. act. Sci. Paris24: 1–624.

    Google Scholar 

  • Hamer, J.J. andRothwell, G.W. 1988. The vegetative structure ofMedullosa endocentrica (Pteridospermopsida). Can. J. Bot.66: 375–387.

    Google Scholar 

  • Holbrook, N.M. andPutz, F.E. 1989. Influence of neighbours on tree form: Effects of sway on the allometry ofLiquidambar styraciflua (sweet gum). Am. J. Bot.76: 1740–1749.

    Google Scholar 

  • Jaffe, M.J. 1973. Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation. With special reference toBryonia dioica. Planta114: 143–157.

    Article  Google Scholar 

  • King, D.A. 1981. Tree dimensions: maximising the rate of height growth in dense stands. Oecologia.51: 351–356.

    Article  Google Scholar 

  • King, D.A. 1987. Load bearing capacity of understory treelets of a tropical wet forest. Bull. Torr. Bot. Club.144: 419–428.

    Google Scholar 

  • King, D.A. andIoucks, O.L. 1978. The theory of tree bole and branch form. Radiat. Env. Biophys.13: 141–165.

    Google Scholar 

  • Lacey, W.S. 1953. Scottish Lower Carboniferous plants:Eristophyton waltoni sp. nov; andEndoxylon zonatum (Kidst) Scott from Dunbartonshire. Ann. Bot.17: 579–596.

    Google Scholar 

  • Laveine, J.P. 1986. The size of the frond in the GenusAlethopteris Sternberg (Pteridospermopsida, Carboniferous). Geobios19: 49–56.

    Google Scholar 

  • Long, A.G. 1963. Some specimens of “Lyginorachis papilio” Kidston assoclated with stems of “Pitys”. Trans. Roy. Soc. Edinb.65: 211–224.

    Google Scholar 

  • Long, A.G. 1979. Observations on the Lower Carboniferous genusPitus Witham. Trans. Roy. Soc. Edinb.70: 111–127.

    Google Scholar 

  • Mosbrugger, V. 1990. The tree habit in land plants, Lect. Notes Earth Sci.28: 1–161, Berlin, Springer.

    Google Scholar 

  • Nachtigall, W., Wisser, C.-M. andWisser, A. 1988. Ein erster Einblick in biomechanische Konstruktionsprinzipien zipien von gräsern. Natürliche. konstruktionen.-Mitt. SFB 230,1: 59–66.

    Google Scholar 

  • Niklas, K.J. 1990. Biomechanics ofPsilotum nudum and some early Palaeozoic sporophytes. Amer. J. Bot.77: 590–606.

    Google Scholar 

  • Niklas, K.J. 1992. Plant Biomechanics: an Engineering Approach to Plant Form and Function. University of Chicago press, Chicago. pp. 1–607.

    Google Scholar 

  • Pryor, J.S. 1989. Delimiting species among permineralized medullosan pteridosperms: a plant bearingAlethopteris fronds from the Upper Pennsylvanian of the Appalachian basin. Can. J. Bot.68: 184–192.

    Google Scholar 

  • Rothwell, G.W. 1975. The Callistophytaceae (Pteridospermopsida): I. Vegetative structures. Palaeontographica B151: 171–196.

    Google Scholar 

  • Rothwell, G.W. andWarner, S. 1984.Cordaixylon dumusum n. sp. (Cordaitales). I. Vegetative structures. Bot. Gaz.145: 275–291.

    Article  Google Scholar 

  • Rowe, N.P. 1988. New observations on the Lower Carboniferous pteridospermDiplopteridium Walton and an associated synangiate organ. Bot. J. Linn. Soc.97: 125–158.

    Google Scholar 

  • Rowe, N.P., Speck, T. andGaltier J.G. 1993. Biomechanical analysis of a Palaeozoic gymnosperm stem. Proc. Roy. Soc. Lond.252: 19–28.

    Google Scholar 

  • Scheckler, S.E. 1975. Ontogeny of Progymnosperms. I. Shoots of Upper Devonian Aneurophytales. Can. J. Bot.54: 202–219.

    Google Scholar 

  • Scheckler, S.E. 1976. Ontogeny of Progymnosperms II. Shoots of Upper Devonian Archaeopteridales. Can. J. Bot.54: 3136–3170.

    Google Scholar 

  • Scott, D.H. 1900. Studies in Fossil Botany. Black: London. pp. 1–533.

    Google Scholar 

  • Scott, D.H. 1923. Studies in Fossil Botany, Volume II (2nd edition) Black: London. pp. 1–446.

    Google Scholar 

  • Spatz, H.-C. and Speck, T. 1994 in press. Pneumatische Strukturen in der Natur.-Der Beitrag des Parenchyms Zur mechanischen Stabilität des betreidehalms. BIONA-report.

  • Speck, T. 1991. Changes of the bending mechanics of lianas and self-supporting taxa during ontogeny. Proc. II. Int. Symp. Sonderforsch. 230 part I. Mitt. SFB. 230,6: 89–95.

    Google Scholar 

  • Speck, T. 1994a. A biomechanical method to distinguish between self-supporting and non self-supporting plants. Rev. Palaeobot. Palynol.18: 65–82.

    Google Scholar 

  • Speck, T. 1994b. Bending mechanics of plant stemsecological, orttogenetical and phylogenetical aspects. Biomimetics.2: 109–128.

    Google Scholar 

  • Speck, T., Spatz, H.-C. andVogellehner, D. 1990. Contributions to the biomechanics of plants. I. Stabilities of plant stems with strengthening elements of different cross-sections against weight and wind forces. Bot. Acta103: 111–122.

    Google Scholar 

  • Speck, T. andVogellehner, D. 1992. Fossile Bäume, Spreizklimmer und Lianen. Versuch einer biomechanischen Analyse der Stammstruktur. Cour. Forsch.-Inst. Senckenberg147: 31–53.

    Google Scholar 

  • Speck, T., Rowe, N.P. and Vogellehner, D. 1994 in press. Growth habits in plants and their correlation with stem's functional anatomy and biomechanics-II. Fossil plants with secondary growth. Architecture, Structure et mécanique de l'arbre.6.

  • Telewski, F.W. andJaffe, M.D. 1986. Thigmomorphogenesis: Field and laboratory studies ofAbies fraseri in response to wind and mechanical perturbation. Physiol. Plant.66: 211–218.

    CAS  PubMed  Google Scholar 

  • Trivett, M.L. andRothwell, G.W. 1988. Modelling the growth architecture of fossil plants: A Palaeozoic filicalean fern. Evol. Trends Pl.2: 25–29.

    Google Scholar 

  • Vincent, J.V.F. 1982. The mechanical design of grass. J. Mat. Sci.17:856–860.

    Article  Google Scholar 

  • Vincent, J.V.F. 1990a. Fracture properties of plants. Adv. Bot. Res.17: 235–287.

    Google Scholar 

  • Vincent, J.F.V. 1990b. Plants.In J.F.V. Vincent ed., Biomechanics-Materials, A Practical Approach, pp. 165–191. IRL Press at Oxford University Press, Oxford.

    Google Scholar 

  • Vincent, J.F.V. andJeronimidis, G. 1991. The mechanical design of fossil plants.In J.M.V. Rayner and R.J. Wooton eds., Biomechanics in Evolution, Cambridge University Press, Cambridge, pp. 21–36.

    Google Scholar 

  • Wainwright, S.A., Biggs, W.D., Currey, J.D. andGosline, J.M. 1976. Mechanical Design in Organisms. John Wiley, New York, pp. 1–423.

    Google Scholar 

  • Wilmanns, O., Bogenrieder, A. andNakamura, Y. 1985. Vergleichende studien desPinus-Krummholzes in der japanischen und europäischen Alpen. Tuxenia,5: 335–358.

    Google Scholar 

  • Wnuk, C. andPfefferkorn, H.W. 1984. The life habits and paleoecology of Middle Pennsylvanian medullosan pteridosperms based on an in situ assemblage from the Bernice Basin (Sullivan County, Fennsylvania, U.S.A.). Rev. Palaeobot. Palynol.41: 329–351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speck, T., Rowe, N.P. Biomechanical analysis ofPitus dayi: Early seed plant vegetative morphology and its implications on growth habit. J. Plant Res. 107, 443–460 (1994). https://doi.org/10.1007/BF02344067

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344067

Key words

Navigation