Skip to main content
Log in

New immunosuppressive drugs: Needs in and applications to pediatric transplantation

  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

The evolution of immunosuppressive therapy toward synergistic drug combinations seeks to minimize toxicity while potentiating efficacy. Median effect analysis discerns synergistic drug combinations that may be suitable for in vivo experiments in animals and for subsequent clinical trials. These studies suggest that two drugs rapamycin (RAPA) and brequinar (BQR) display synergistic effects in combination with cyclosporine. This combination must be evaluated for relative toxicity versus efficacy. Clinical trials to assess the individual toxicities of RAPA and BQR are presently underway in order to discern appropriate doses for randomized trials of clinical efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMA:

Behringwerke monoclonal antibody

BQR:

brequinar

CI:

combination index

CsA:

cyclosporine

II:

interleukin

MAb:

monoclonal antibodies

NFAT:

nuclear factor of activated T-cell

RAPA:

rapamycin

References

  1. Brinker KR, Dickerman R, Gonwa T (1990) A randomized trial comparing double drug and triple drug therapy in primary cadaveric renal transplantation. Transplantation 50:43

    PubMed  Google Scholar 

  2. Chou TC, Talaly P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27

    Article  PubMed  Google Scholar 

  3. Cramer D, Chapman FA, Jaffee BD, Jones EA, Knoop M, Eiras-Hreha G, Makowka L (1992) The fact of a new immuno-suppressive drug, brequinar sodium, on heart, liver and kidney allograft rejection in the rat. Transplantation (in press)

  4. Didlake RH, Kim EK, Sheehan K, Screiber RD, Kahan BD (1988) Effect of combined antigamma interferon antibody and cyclosporine therapy on cardiac allograft survival in the rat. Transplantation 45:353

    PubMed  Google Scholar 

  5. Drachman R, Schlesinger M, Shapira H, Drukker A (1989) The immune status of uremic children/adolescents with chronic renal failure and renal replacement therapy. Pediatr Nephrol 3:305–308

    Google Scholar 

  6. Fanslow WC, Sims JE, Sassenfeld H, Morrisey P, Gillis S, Dower S, Widmer M (1990) Regulation of alloreactivity in vivo by a soluble form of the interleukin-1 receptor. Science 147:739

    Google Scholar 

  7. Fanslow WC, Clifford K, Park I, Rubin A, Voice R, Beckmann M, Widmer M (1991) Regulating alloreactivity in vivo by IL-4 and the soluble IL-4 receptor. J Immunol 147:535

    PubMed  Google Scholar 

  8. Fischer G, Wittmann-Liebold B, Lary K, Kiefhaber T, Schmid F (1989) Cyclophilin and peptidyl cis-trans isomerase are probably identical proteins. Nature 337:476

    Article  PubMed  Google Scholar 

  9. Hall BM, Jelbest ME, Dorsch SE (1984) Suppressor T cells in rats prolonged cardiac allograft survival after treatment with cyclosporine. Transplantation 37:595

    PubMed  Google Scholar 

  10. Handschumacher R, Harding M, Rice J, Drugge R, Speicher D (1984) Cyclophilin: a specific cytosolic binding protein for Cyclosporine A. Science 226:544

    PubMed  Google Scholar 

  11. Jorgenson W (1991) Rusting of the lock and key model for protein-ligand binding. Science 254:954

    PubMed  Google Scholar 

  12. Kahan BD (1981) Drug therapy: cyclosporine. N Engl J Med 321:1725

    Google Scholar 

  13. Kahan BD (1985) Overview: individualization of cyclosporine therapy using pharmacokinetic and pharmacodynamic parameters. Transplantation 40:457

    PubMed  Google Scholar 

  14. Kahan BD (1991) Synergism, how assessed and how achieved. Clin Transplant 5:534

    Google Scholar 

  15. Kahan BD (1992) Optimization of cyclosporine therapy with combinations of immunosuppressive agents. Transplant Proc (in press)

  16. Kahan BD, Chang JY, Sehgal SN (1991) Preclinical evaluation of a new potent immunosuppressive agent, rapamycin. Transplantation 52:185

    PubMed  Google Scholar 

  17. Kahan BD, Gibbons S, Tejpal N, Stepkowski S, Chou TC (1991) Synergistic interactions of cyclosporine and rapamycin to inhibit immune performances of normal human peripheral blood lymphocytes in vitro. Transplantation 51:232

    PubMed  Google Scholar 

  18. Kupiec-Weglinski JW, Filho MA, Strom TB, Tilney NL (1984) Sparing of suppressor cells: a critical action of cyclosporine. Transplantation 38:97

    PubMed  Google Scholar 

  19. Kurrle R, Seyfert W, Trautwein A, Seiler F (1985) Cellular mechanisms of T cell activation by modulation of the T3 antigen complex. Transplant Proc 17:880

    Google Scholar 

  20. Lindholm A, Albrechtsen D, Tufveson G, Karlberg I, Persson N, Groth C (1992) A randomized trial of cyclosporine and prednisolone versus cyclosporine, azathioprine and prednisolone in primary cadaveric transplantation. Transplantation 53 (in press)

  21. Liu J, Farmer J, Friedman J, Weissman I, Screiber S (1991) Calcineurin is a common target of cyclophilin — Cyclosporin A and FKBP-FK50ß6 complexes. Cell 66:807

    Article  PubMed  Google Scholar 

  22. Miyagawa S, Stepkowski SM, Kahan BD (1991) Mechanism of unresponsiveness in rats induced by a short course of FK 506 or CyA. Transplant Proc 23:334

    PubMed  Google Scholar 

  23. Platz KP, Sollinger HW, Hullett DA, et al, (1991) RS-61443 — a new, potent immunosuppressive agent. Transplantation 51:27

    PubMed  Google Scholar 

  24. Ponticelli C, Tarantino A, Montagnino G (1988) A randomized trial comparing triple drug and double drug therapy in renal transplantation. Transplantation 45:913

    PubMed  Google Scholar 

  25. Soullilou JP, Cantarovich D, LeMauff B (1990) Randomized controlled trial of a monoclonal antibody against the interleukin-2 receptor (33B3.1) as compared with rabbit antithymocyte globulin for prophylaxis against rejection of renal allografts. N Engl J Med 322:1175

    PubMed  Google Scholar 

  26. Starzl TE, Todo S, Fung J, et al (1989) FK506 for human liver, kidney and pancreas transplantation. Lancet II:1000

    Google Scholar 

  27. Starzl TE, Fung J, Jordan M, et al (1990) Kidney transplantation under FK506. JAMA 264:63

    PubMed  Google Scholar 

  28. Turka LA, Dayton J, Sinclair G, Thompson CB, Mitchell BS (1991) Guanine ribonucleotide depletion inhibits T cell activation: mechanism of action of the immunosuppressive drug mizorbine. J Clin Invest 87:940–948

    PubMed  Google Scholar 

  29. Ullman KS, Flanagan WM, Cothesy B, Kuo P, Northrop JP, Crabtree GR (1991) Site of action of cyclosporine and FK506 in the pathways of communication between the T-lymphocyte antigen receptor and the early activation genes. Transplant Proc 23:2845

    PubMed  Google Scholar 

  30. Van Duyne G, Standaert R, Karplus P, Screiber S, Clardy J (1991) Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science 252:839

    PubMed  Google Scholar 

  31. Vathsala A, Chou TC, Kahan BD (1990) Analysis of the interaction of immunosuppressive drugs with cyclosporine in inhibiting DNA proliferation. Transplantation 49:436

    PubMed  Google Scholar 

  32. Wüthrich K, Freyberg B, Weber C, Wider G, Traber R, Widmer H, Braun W (1991) Receptor-induced conformation change of the immunosuppressant cyclosporin A. Science 254:953

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahan, B.D. New immunosuppressive drugs: Needs in and applications to pediatric transplantation. Eur J Pediatr 151 (Suppl 1), S9–S12 (1992). https://doi.org/10.1007/BF02125796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02125796

Key words

Navigation