Skip to main content
Log in

Cellulose digestion in primitive hexapods: Effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat,Thermobia domestica (Zygentoma, Lepismatidae)

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Antibiotic feeding studies were conducted on the firebrat,Thermobia domestica (Zygentoma, Lepismatidae) to determine if the insect's gut cellulases were of insect or microbial origin. Firebrats were fed diets containing either nystatin, metronidazole, streptomycin, tetracycline, or an antibiotic cocktail consisting of all four antibiotics, and then their gut microbial populations and gut cellulase levels were monitored and compared with the gut microbial populations and gut cellulase levels in firebrats feeding on antibiotic-free diets. Each antibiotic significantly reduced the firebrat's gut micro-flora. Nystatin reduced the firebrat's viable gut fungi by 89%. Tetracycline and the antibiotic cocktail reduced the firebrat's viable gut bacteria by 81% and 67%, respectively, and metronidazole, streptomycin, tetracycline, and the antibiotic cocktail reduced the firebrat's total gut flora by 35%, 32%, 55%, and 64%, respectively. Although antibiotics significantly reduced the firebrat's viable and total gut flora, gut cellulase levels in firebrats fed antibiotics were not significantly different from those in firebrats on an antibiotic-free diet. Furthermore, microbial populations in the firebrat's gut decreased significantly over time, even in firebrats feeding on the antibiotic-free diet, without corresponding decreases in gut cellulase levels. Based on this evidence, we conclude that the gut cellulases of firebrats are of insect origin. This conclusion implies that symbiont-independent cellulose digestion is a primitive trait in insects and that symbiont-mediated cellulose digestion is a derived condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnhardt, C.S. 1961. The internal anatomy of the silverfishCtenolepisma campbelli andLepisma saccharinum (Thysanura; Lepismatidae).Ann. Entomol. Soc. Am. 54:177–196.

    Google Scholar 

  • Boudreaux, H.B. 1979. Arthropod Phylogeny with Special Reference to Insects. Wiley & Sons, New York.

    Google Scholar 

  • Bracke, J.W., Cruden, D.L., andMarkovetz, A.J. 1978. Effect of metronidazole on the intestinal microflora of the American cockroach,Periplaneta americana L.Antimicrob.Agents Chemother. 13:115–120.

    Google Scholar 

  • Conte, J.E., andBarriere, S.L. 1988. Manual of Antibiotics and Infectious Diseases. Lea & Febiger, Philadelphia, 392 pp.

    Google Scholar 

  • Coughlan, M.P., andLjungdahl, L.G. 1988. Comparative biochemistry of fungal and bacterial cellulolytic enzyme systems, pp. 11–30,In J.-P. Aubert, P. Beguin, and J. Millet (eds.). Biochemistry and Genetics of Cellulose Degradation. Academic Press, London.

    Google Scholar 

  • Davis, B.D., Dulbecco, R., Eisen, H.N., andGinsberg, H.S. 1990. Microbiology. Lippincott, Philadelphia, 1215 pp.

    Google Scholar 

  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., andSmith, F. 1956. Colorimetric methods for determination of sugars and related substances.Anal. Chem. 28:350–356.

    Google Scholar 

  • Francisco, D.E., Mah, R.A., andRabin, A.C. 1973. Acridine orange-epifluorescence technique for counting bacteria in natural waters.Trans. Am. Microsc. Soc. 92:416–421.

    PubMed  Google Scholar 

  • Gilliam, M., Lorenz, B.J., andRichardson, G.V. 1988. Digestive enzymes and micro-organisms in honey bees,Apis mellifera: influence of streptomycin, age, season and pollen.Microbiol 55:95–114.

    Google Scholar 

  • Greenwood, D. 1989. Antimicrobial Chemotherapy. Oxford Press, New York.

    Google Scholar 

  • Hogan, M., Veivers, P.C., Slaytor, M., andCzolij, R.T. 1988a. The site of cellulose breakdown in higher termites (Nasutitermes walkeri andNasutitermes exitosus).J. Insect Physiol. 34:891–899.

    Google Scholar 

  • Hogan, M., Schultz, M.W., Slaytor, M., Czolij, R.T., andO'Brien, R.W. 1988b. Components of termite and protozoal cellulases from the lower termite,Coptotermes lacteus Froggatt.Insect Biochem. 18:45–51.

    Google Scholar 

  • Jarosz, J. 1979. Yeastlike fungi from greater wax moth larvae (Galleria mellonella) fed antibiotics.J. Invert. Pathol. 34:257–262.

    Google Scholar 

  • Kaestner, A. 1973. Lehrbuch der Speziellen Zoologie. Band I. Wirbellose 3 Teil. Insecta. B. Speziellen Teil. Gustav Fisher Verlag, Stuttgart.

    Google Scholar 

  • Kristensen, N.P. 1981. Phylogeny of insect orders.Annu. Rev. Entomol. 26:135–157.

    Google Scholar 

  • Kurylowicz, W. 1976. Antibiotics: A critical review. Polish Medical Publishers, 204 pp.

  • Lasker, R., andGiese, A.C. 1956. Cellulose digestion in the silverfishCtenolepisma lineata.J. Exp. Biol. 33:542–553.

    Google Scholar 

  • Lindsay, E. 1940. The biology of the silverfish,Ctenolepisma longicaudata Esch. with particular reference to its feeding habits.Proc. R. Soc. Victoria (N.S.) 52:35–83.

    Google Scholar 

  • Martin, M.M. 1987. Invertebrate-Microbial Interactions: Ingested Fungal Enzymes in Arthropod Biology. Comstock Publishing Associates, Ithaca, New York.

    Google Scholar 

  • Martin, M.M. 1991. The evolution of cellulose digestion in insects.Phil. Trans. R. Soc. London Ser. B. 333:281–288.

    Google Scholar 

  • Modder, W.W.D. 1964. The digestive enzymes in the alimentary system ofAcrotelsa collaris (Thysanura: Lepismatidae).Ceylon J. Sci. (Bio. Sci.) 5:1–7.

    Google Scholar 

  • Modder, W.W.D. 1975. Feeding and growth ofAcrotelsa collaris (Fabricius) (Thysanura, Lepismatidae) on different types of paper.J. Stored Prod. Res. 11:71–74.

    Google Scholar 

  • Potts, R.C., andHewitt, P.G. 1973. The distribution of intestinal bacteria and cellulase activity in the harvester termiteTrinervitermes trinervoides (Nasutitermitinae).Insectes Soc. 20:215–220.

    Google Scholar 

  • Potts, R.C., andHewitt, P.H. 1974a. The partial purification and some properties of the cellulase from the termiteTrinervitermes trinervoides (Nasutitermitinae).Comp. Biochem. Physiol. 47B:317–326.

    Google Scholar 

  • Potts, R.C., andHewitt, P.H. 1974b. Some properties and reaction characteristics of the partially purified cellulase from the termiteTrinervitermes trinervoides (Nasutitermitinae).Comp. Biochem. Physiol. 47B:327–337.

    Google Scholar 

  • Rouland, C., Civas, A., Renoux, J., andPetek, F. 1988a. Purification and properties of cellulase from the termiteMacrotermes mülleri (Termitidae, Macrotermitinae) and its symbiotic fungusTermitomyces sp.Comp. Biochem. Physiol. 91B:449–458.

    Google Scholar 

  • Rouland, C., Civas, A., Renoux, J., andPetek, F. 1988b. Synergistic activities of the enzymes involved in cellulose degradation, purified fromMacrotermes mülleri and from its symbiotic fungusTermitomyces sp.Comp. Biochem. Physiol. 91B:459–465.

    Google Scholar 

  • Schultz, M.W., Slaytor, M., Hogan, M., andO'Brien, R.W. 1986. Components of cellulase from the higher termite,Nasutitermes walkeri.Insect Biochem. 16:929–932.

    Google Scholar 

  • Scrivener, A.M., Slaytor, M., andRose, H.A. 1989. Symbiont-independent digestion of cellulose and starch inPanesthia cribrata Saussure, an Australian wood-eating roach.J. Insect Physiol. 35:935–941.

    Google Scholar 

  • Slaytor, M. 1992. Cellulose digestion in termites and cockroaches: What role do symbionts play?Comp. Biochem. Physiol. 103B:775–784.

    Google Scholar 

  • Smith, E.L. 1970. Biology and structure of some California bristletails and silverfish.Pan-Pac. Entomol. 46:212–225.

    Google Scholar 

  • Taylor, E.C. 1982. Role of aerobic microbial populations in cellulose digestion by desert millipedes.Appl. Environ. Microbiol. 44:281–291.

    Google Scholar 

  • Trager, W. 1932. A cellulase from the symbiotic intestinal flagellates of termites and of the roach,Cryptocercus punctulatus.Biochem. J. 26:1763–1771.

    Google Scholar 

  • Veivers, P.C., Musca, A.M., O'Brien, R.W., andSlaytor, M. 1981. Digestive enzymes of the salivary glands and gut ofMastotermes darwiniensis.Insect Biochem. 12:35–40.

    Google Scholar 

  • Veivers, P.C., Mühlemann, R., Slaytor, M., Leuthold, R.H., andBignell, D.E. 1991. Digestion, diet and polyethism in two fungus-growing termites:Macrotermes subhyalinus Rambur andM. michaelseni Sjostedt.J. Insect Physiol. 37:675–682.

    Google Scholar 

  • Wilkinson, L. 1987. Systat: The System for Statistics. Systat, Inc, Evanston, Illinois.

    Google Scholar 

  • Wygodzinsky, P. 1972. A review of the silverfish (Lepismatidae, Thysanura) of the United States and the Caribbean Area.Am. Mus. Novit. 2482:1–26.

    Google Scholar 

  • Zhang, J., Scrivener, A.M., Slaytor, M., andRose, H.A. 1993. Diet and carbohydrase activities in three cockroaches,Calolampra elegans Roth and Princis,Geoscapheus dilatatus Saussure andPanesthia cribrata Saussure.Comp. Biochem. Physiol. 104A:155–161.

    Google Scholar 

  • Zinkler, D. 1983. Ecophysiological adaptations of litter-dwelling Collembola and tipulid larvae, pp. 335–343,in New Trends in Soil Biology (P. Lebrun, ed.). Louvain-la-Nueve.

  • Zinkler, D., andGotze, M. 1987. Cellulose digestion by the firebratThermobia domestica.Comp. Biochem. Physiol. 88B:661–666.

    Google Scholar 

  • Zinkler, D., Götze, M., andFabian, K. 1986. Cellulose digestion in “primitive insects” (Apterygota) and oribatid mites.Zool. Beitr. N.F. 30:17–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treves, D.S., Martin, M.M. Cellulose digestion in primitive hexapods: Effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat,Thermobia domestica (Zygentoma, Lepismatidae). J Chem Ecol 20, 2003–2020 (1994). https://doi.org/10.1007/BF02066239

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02066239

Key Words

Navigation