Skip to main content
Log in

A lagrangian random-walk model for simulating water vapor, CO2 and sensible heat flux densities and scalar profiles over and within a soybean canopy

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

An integrated canopy micrometeorological model is described for calculating CO2, water vapor and sensible heat exchange rates and scalar concentration profiles over and within a crop canopy. The integrated model employs a Lagrangian random walk algorithm to calculate turbulent diffusion. The integrated model extends previous Lagrangian modelling efforts by employing biochemical, physiological and micrometeorological principles to evaluate vegetative sources and sinks. Model simulations of water vapor, CO2 and sensible heat flux densities are tested against measurements made over a soybean canopy, while calculations of scalar profiles are tested against measurements made above and within the canopy. The model simulates energy and mass fluxes and scalar profiles above the canopy successfully. On the other hand, model calculations of scalar profiles inside the canopy do not match measurements.

The tested Lagrangian model is also used to evaluate simpler modelling schemes, as needed for regional and global applications. Simple, half-order closure modelling schemes (which assume a constant scalar profile in the canopy) do not yield large errors in the computation of latent heat (LE) and CO2 (F c ) flux densities. Small errors occur because the source-sink formulation of LE andF c are relatively insensitive to changes in scalar concentrations and the scalar gradients are small. On the other hand, complicated modelling frames may be needed to calculate sensible heat flux densities; the source-sink formulation of sensible heat is closely coupled to the within-canopy air temperature profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. E., Verma, S. B., and Rosenberg, N. J.: 1984, ‘Eddy Correlation Measurements of CO2, Latent Heat and Sensible Heat Fluxes over a Crop Surface’,Boundary-Layer Meteorol. 29, 263–272.

    Article  Google Scholar 

  • Baldocchi, D. D.: 1982, ‘Mass and Energy Exchanges of Soybeans: Microclimate-Plant Architectural Interactions’; Center for Agricultural Meteorology and Climatology/Institute of Agriculture and Natural Resources/University of Nebraska-Lincoln.

  • Baldocchi, D. D.: 1992, ‘Scaling Water Vapor and Carbon Dioxide Exchange from Leaves to Canopies: Rules and Tools’, in J. Ehleringer and C. Field (eds.),Scaling Processes between Leaf and Landscape Levels, Academic Press, New York, in press.

    Google Scholar 

  • Baldocchi, D. D. and Meyers, T. P.: 1988, ‘Turbulence Structure in a Deciduous Forest’,Boundary-Layer Meteorol. 43, 345–364.

    Article  Google Scholar 

  • Baldocchi, D. D., Verma, S. B., and Rosenberg, N. J.: 1981, ‘Mass and Energy Exchanges of a Soybean Canopy under Various Environmental Regimes’,Agron. J. 73, 706–710.

    Google Scholar 

  • Baldocchi, D. D., Verma, S. B., and Rosenberg, N. J.: 1983, ‘Characteristics of Air Flow Above and Within Soybean Canopies’,Boundary-Layer Meteorol. 25, 43–54.

    Article  Google Scholar 

  • Bergström, H. and Högström, U.: 1989, ‘Turbulent Exchange Above a Pine Forest. II. Organized Structures’,Boundary-Layer Meteorol. 49, 231–263.

    Article  Google Scholar 

  • Berry, J. A. and Downton, W. J. S.: 1982, ‘Environmental Regulation of Photosynthesis’, inPhotosynthesis: Development, Carbon Metabolism and Plant Productivity, Vol II, Academic Press, New York, pp. 263–343.

    Google Scholar 

  • Bjorkman, O.: 1980, ‘The Response of Photosynthesis to Temperature’, in J. Raceet al. (eds.),Plants and their Atmospheric Environment, Blackwell Scientific Publications, Oxford, pp. 273–301.

    Google Scholar 

  • Bristow, K. L.: 1987, ‘On Solving the Surface Energy Balance Equation for Surface Temperature’,Agricultural Forest Meteorol. 39, 49–54.

    Article  Google Scholar 

  • Bunce, J. A.: 1985, ‘Effects of Boundary Layer Conductance on the Response of Stomata to Humidity’,Plant, Cell and Environment 8, 55–57.

    Google Scholar 

  • Carlyle, J. C. and Than, U. B.: 1988, ‘Abiotic Controls of Soil Respiration Beneath an Eighteen-Year OldPinus Radiata Stand in South-Eastern Australia’,J. Ecol. 76, 654–662.

    Google Scholar 

  • Cionco, R. M.: 1972, ‘A Wind-Profile Index for Canopy Flow’,Boundary-Layer Meteorol. 3, 255–263.

    Article  Google Scholar 

  • Collatz, J., Ball, J. T., Rivet, C., and Berry, J. A.: 1991, ‘Regulation of Stomatal Conductance and Transpiration: A Physiological Model of Canopy Processes’,Agricultural Forest Meteorol. 54, 107–136.

    Article  Google Scholar 

  • Collineau, S. and Brunet, Y.: 1992, ‘Detection of Turbulent Coherent Motions in a Forest Canopy Layer. II. Time-Scales and Conditional Averages’,Boundary-Layer Meteorol. to be submitted.

  • Da Costa, J. M. N., Rosenberg, N. J., and Verma, S. B.: 1986, ‘Respiratory Release of CO2 in Alfalfa and Soybean under Field Conditions’,Agricultural Forest Meteorol. 37, 143–157.

    Article  Google Scholar 

  • Deardorff, J. W.: 1978, ‘Closure of Second- and Third-Moment Rate Equations for Diffusion in Homogeneous Turbulence’,Phys. Fluids 21, 525–530.

    Article  Google Scholar 

  • Denmead, O. T. and Bradley, E. F.: 1985, ‘Flux-Gradient Relationships in a Forest Canopy’, in B. A. Hutchison and B. B. Hicks (eds.),Forest-Atmosphere Interactions, D. Reidel, Dordrecht, pp. 421–442.

    Google Scholar 

  • Durbin, P. A.: 1980, ‘A Random Flight Model of Inhomogeneous Turbulent Dispersion’,Phys. Fluids 23, 2151–2153.

    Article  Google Scholar 

  • Farquhar, G. D. and Caemmerer, S. von: 1982, ‘Modeling Photosynthetic Response to Environmental Conditions’, in O. L. Langeet al., (eds.),Encyclopedia of Plant Physiology 12B, Springer-Verlag, Berlin, pp. 549–587.

    Google Scholar 

  • Farquhar, G. D., Dubbe, D. R., and Raschke, K.: 1978, ‘Gain of the Feedback Loop Involving Carbon Dioxide and Stomata’,Plant Physiol. 62, 406–412.

    Google Scholar 

  • Farquhar, G. D., Caemmerer, S. von, and Berry, J. A.: 1980, ‘A Biochemical Model of Photosynthetic CO2 Assimilation in Leaves of C3 Species’,Planta 149, 78–90.

    Article  Google Scholar 

  • Finnigan, J. J.: 1985, ‘Turbulent Transport in Flexible Plant Canopies’, in B. A. Hutchison and B. B. Hicks (eds.),The Forest-Atmosphere Interaction, D. Reidel Publishing Company, Dordrecht, The Netherlands.

    Google Scholar 

  • Fritschen, L. J. and Gay, L. W.: 1979,Environmental Instrumentation, Springer-Verlag, New York. 216 pp.

    Google Scholar 

  • Fuchs, M. and Tanner, C. B.: 1967, ‘Evaporation from a Drying Soil’,J. Appl. Meteorol. 6, 852–857.

    Article  Google Scholar 

  • Gao, W., Shaw, R. H., and Paw U, K. T.: 1989, ‘Observation of Organized Structure in Turbulent Flow Within and Above a Forest Canopy’,Boundary-Layer Meteorol. 47, 349–377.

    Article  Google Scholar 

  • Goudriaan, J.: 1977, ‘Crop Micrometeorology: a Simulation Study’, Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands. 249 pp.

    Google Scholar 

  • Grace, J.: 1980, ‘Some Effects of Wind on Plants’, in J. Raceet al. (eds.),Plants and their Atmospheric Environment, Blackwell Scientific Publications, Oxford, pp. 31–56.

    Google Scholar 

  • Grantz, D. A., and Meinzer, F. C.: 1990, ‘Stomatal Response to Humidity in a Sugarcane Field: Simultaneous Porometric and Micrometeorological Measurements’,Plant, Cell and Environ. 13, 27–37.

    Google Scholar 

  • Harley, P. C., Weber, J. A., and Gates, D. M.: 1985, ‘Interactive Effects of Light, Leaf Temperature, CO2 and O2 on Photosynthesis in Soybean’,Planta 165, 249–263.

    Article  Google Scholar 

  • Hunt, J. C. R. and Weber, A. H.: 1979, ‘A Lagrangian Statistical Analysis of Diffusion from a Ground-Level Source in a Turbulent Boundary Layer’,Quart. J. Roy. Metorol. Soc. 105, 423–443.

    Article  Google Scholar 

  • Jarvis, P. G.: 1976, ‘The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field’,Phil. Trans. Royal Soc. London,B 273, 593–610.

    Google Scholar 

  • Jones, H.: 1983,Plants and Microclimate, Cambridge Univ. Press, Cambridge, UK. 323 pp.

    Google Scholar 

  • Lamb, R.: 1980, ‘Mathematical Principles of Turbulent Diffusion Modeling’, in A. Longhetto (ed.),Atmospheric Boundary Layer Physics, Elsevier Sci. Pub., pp. 173–210.

  • Larson, E. M., Hesketh, J. D., Woolley, J. T., and Peters, D. B.: 1981, ‘Seasonal Variations in Apparent Photosynthesis Among Stands of Different Soybean Cultivars’,Photosynthetic Res. 2, 3–20.

    Article  Google Scholar 

  • Leclerc, M. Y., Thurtell, G. W., and Kidd, G. E.: 1988, ‘Measurements and Langevin Simulations of Mean Tracer Concentration Fields Downwind from a Circular Line Source Inside an Alfalfa Canopy’,Boundary-Layer Meteorol. 43, 287–308.

    Article  Google Scholar 

  • Legg, B. J.: 1983, ‘Turbulent Dispersion from an Elevated Line Source: Markov-Chain Simulations of Concentration- and Flux-Profiles’,Quart. J. Roy. Meteorol. Soc. 109, 645–660.

    Article  Google Scholar 

  • Legg, B. J. and Raupach, M. R.: 1982, ‘Markov-Chain Simulation of Particle Dispersion in Inhomogeneous Flows: the Mean Drift Velocity Induced by a Gradient in Eulerian Velocity Variance’,Boundary-Layer Meteorol. 24, 3–13.

    Article  Google Scholar 

  • Long, S. P.: 1985, ‘Leaf Gas Exchange’, in J. Barber and N. R. Baker (eds.),Photosynthetic Mechanisms and the Environment, Elsevier Sci. Pub, pp. 453–499.

  • Luhar, A. K. and Britter, R. E.: 1989, ‘A Random Walk Model for Dispersion in Inhomogeneous Turbulence in a Convective Boundary Layer’,Atmos. Envir. 23, 1911–1924.

    Article  Google Scholar 

  • Mahfouf, J. F. and Noilhan, J.: 1991, ‘Comparative Study of Various Formulations of Evaporation from Bare Soil Usingin situ Data’,J. Appl. Meteorol. 30, 1354–1365.

    Article  Google Scholar 

  • Meyers, T. P. and Paw U, K. T.: 1986, ‘Testing of a Higher-Order Closure Model for Modeling Airflow within and above Plant Canopies’,Boundary-Layer Meteorol. 37, 297-311.

  • Meyers, T. P. and Paw U, K. T.: 1987, ‘Modelling the Plant Canopy Micrometeorology with Higher-Order Closure Principles’,Agricultural Forest Meteorol. 41, 143–163.

    Article  Google Scholar 

  • Naot, O. and Mahrer, Y.: 1989, ‘Modeling Microclimate Environments: a Verification Study’,Boundary-Layer Meteorol. 46, 333–354.

    Article  Google Scholar 

  • Norman, J. M.: 1979, ‘Modeling the Complete Crop Canopy’, in B. J. Barfield and J. F. Gerber (eds.),Modification of the Aerial Environment of Plants, American Society of Agricultural Engineers, St. Joseph, MI, pp. 249–277.

    Google Scholar 

  • Norman, J. M., Welles, J. M., and Walter-Shea, E. A.: 1985, ‘Contrasts Among Bidirectional Reflectance of Leaves, Canopies and Soils’,IEEE Transactions on Geoscience and Remote Sensing, E-23: pp. 659–667.

    Google Scholar 

  • Raupach, M. R.: 1987, ‘A Lagrangian Analysis of Scalar Transfer in Vegetation Canopies’,Quart. J. R. Meteorol. Soc. 113, 107–120.

    Article  Google Scholar 

  • Raupach, M. R.: 1988, ‘Canopy Transport Processes’, in W. L. Steffen and O. T. Denmead (eds.),Flow and Transport in the Natural Environment, Springer-Verlag, Berlin.

    Google Scholar 

  • Raupach, M. R.: 1989a, ‘Applying Lagrangian Fluid Mechanics to Infer Scalar Source Distributions from Concentration Profiles in Plant Canopies’,Agric. Forest Meteorol. 47, 85–108.

    Article  Google Scholar 

  • Raupach, M. R.: 1989b, ‘A Practical Lagrangian Method for Relating Scalar Concentrations to Source Distributions in Vegetation Canopies’,Quart. J. Roy. Meteorol. Soc. 115, 609–632.

    Article  Google Scholar 

  • Raupach, M. R. and Finnigan, J. J.: 1988, ‘Single-Layer Models of Evaporation from Plant Canopies are Incorrect but Useful, Whereas Multilayer Models are Correct but Useless’,Austral. J. Plant Physiol. 15, 705–716.

    Google Scholar 

  • Rosenberg, N. J. and Brown, K. W.: 1974, ‘Self Checking Psychrometer Systems for Gradient and Profile Determinations near the Ground’,Agric. Meteorol. 13, 215–226.

    Article  Google Scholar 

  • Sawford, B. L.: 1985, ‘Lagrangian Statistical Simulation of Concentration Mean and Fluctuation Fields’,J. Clim Appl. Meteorol. 24, 1152–1166.

    Article  Google Scholar 

  • Sawford, B. L.: 1986, ‘Generalized Random Forcing in Random-Walk Turbulent Dispersion Models’,Phys. Fluids 29, 3582–3585.

    Article  Google Scholar 

  • Shuttleworth, W. J.: 1991, ‘Evaporation Models in Hydrology’, in T. J. Schmugge and J. C. Andre (eds.),Land Surface Evaporation: Measurement and Parameterization, Springer-Verlag, New York, pp. 93–120.

    Google Scholar 

  • Sinclair, T. R., Murphy, C. E., and Knoerr, K. R.: 1976, ‘Development and Evaluation of Simplified Models for Simulating Canopy Photosynthesis and Transpiration’,J. Appl. Ecol. 13, 813–829.

    Google Scholar 

  • Spanier, J. and Gelbard, E. M.: 1969,Monte Carlo Principles and Neutron Transport Problems, Addison-Wesley Pub. Co., Reading, MA, 234 pp.

    Google Scholar 

  • Stitger, C. J. and Welgraven, A. D.: 1976, ‘An Improved Radiation Protected Differential Psychrometer for Crop Environment’,Arch. Met. Geophys. Biokl. 24B, 177–181.

    Google Scholar 

  • Thomson, D. J.: 1984, ‘Random Walk Modelling of Diffusion in Inhomogeneous Turbulence’,Quart. J. R. Meteorol. Soc. 110, 1107–1120.

    Article  Google Scholar 

  • Thomson, D. J.: 1987, ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flow’,J. Fluid Mech. 180, 529–556.

    Google Scholar 

  • Van den Hurk, B. and Baldocchi, D. D.: 1990, ‘A Random Walk Model for Simulating Water Vapor Exchange in a Soybean Canopy’, NOAA technical report. ARL-185. 46 pp.

  • Verma, S. B. and Rosenberg, N. J.: 1975, ‘Accuracy of Lysimetric, Energy Balance and Stability-Corrected Aerodynamic Methods of Estimating Above Canopy Flux of CO2’,Agron. J. 67, 699–704.

    Google Scholar 

  • Verma, S.B., Kim, J., and Clement, R. J.: 1989, ‘Carbon Dioxide, Water Vapor and Sensible Heat Fluxes over a Tallgrass Prairie’,Boundary-Layer Meteorol. 46, 53–67.

    Google Scholar 

  • Waggoner, P. E., Furnival, G. M., and Reifsnyder, W. E.: 1969, ‘Simulation of the Microclimate in a Forest’,Forest Science 15, 37–45.

    Google Scholar 

  • Walter-Shea, E. A., Norman, J. M., and Blad, B. L.: 1989, ‘Leaf Bidirectional Reflectance and Transmittance in Corn and Soybean’,Remote Sensing Environment 29, 161–174.

    Article  Google Scholar 

  • Webb, E. K., Pearman, G. I., and Leuning, R.: 1980, ‘Correction of Flux Measurements for Density Effects Due to Heat and Water Vapor Transfer’,Quart. J. R. Meteorol. Soc. 106, 85–100.

    Article  Google Scholar 

  • Wilson, J. D.: 1989, ‘Turbulent Transport Within the Plant Canopy’, in T. A. Black, D. L. Spittlehouse, M. Novak and D. T. Price (eds.),Estimation of Areal Evapotranspiration, IAHS Press, Wallingford, UK, pp. 43–80.

    Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981a, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence, I: Systems with Constant Turbulent Velocity Scale’,Boundary-Layer Meteorology 21, 295–313.

    Article  Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981b, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence, II: Systems with Variable Turbulent Velocity Scale’,Boundary-Layer Meteorol. 21, 423–441.

    Article  Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981c, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence, III: Comparison of Predictions with Experimental Data for the Atmospheric Surface Layer’,Boundary-Layer Meteorol. 21, 443–463.

    Article  Google Scholar 

  • Wilson, J. D., Ward, D. P., Thurtell, G. W., and Kidd, G. E.: 1982, ‘Statistics of Atmospheric Turbulence Within and Above a Corn Canopy’,Boundary-Layer Meteorol. 24, 495–519.

    Article  Google Scholar 

  • Wilson, J. D., Legg, B. J., and Thomson, D. J.: 1983, ‘Calculation of Particle Trajectories in the Presence of a Gradient in Turbulent-Velocity Variance’,Boundary-Layer Meteorol. 27, 163–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldocchi, D. A lagrangian random-walk model for simulating water vapor, CO2 and sensible heat flux densities and scalar profiles over and within a soybean canopy. Boundary-Layer Meteorol 61, 113–144 (1992). https://doi.org/10.1007/BF02033998

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033998

Keywords

Navigation