Skip to main content
Log in

Enzymatic reduction of fatty acids and acyl-CoAs to long chain aldehydes and alcohols

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The properties of enzymatic systems involved in the synthesis of long chain aldehydes and alcohols have been reviewed. Fatty acid and acyl-CoA reductases are widely distributed and generate fatty alcohols for ether lipid and was ester synthesis as well as fatty aldehydes for bacterial bioluminescence. Fatty alcohol is generally the major product of fatty acid reduction in crude or membrane systems, although reductases which release fatty aldehydes as products have also been purified. The reduction of fatty acid proceeds through the ATP-dependent formation of acyl intermediates such as acyl-CoA and acyl protein, followed by reduction to aldehyde and alcohol with NAD(P)H. In most cases, both the rate of fatty acid conversion and acyl chain specificity of the reaction are determined at the level of reduction of the intermediate. The reduction of fatty acids represents the major pathway for the control of the synthesis of fatty aldehydes and alcohols. Several other enzymatic reactions involved in lipid degradation also release fatty aldehydes but do not apear to play an important role in long chain alcohol synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansell, G.B., and Spanner, S., The magnesium-ion-dependent cleavage of the vinyl ether linkage of brain ethanolamine plasmologen. Biochem. J.94 (1965) 252–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barden, R.E., and Cleland, W.W., Alteration of the concentration of dilute palmityl-CoA solutions by surface adsorption. Biochem. biophys. Res. Commun.34 (1969) 555–559.

    Article  CAS  PubMed  Google Scholar 

  3. Bishop, J.E., and Hajra, A.K., Specificity of reduction of fatty acids to long chain alcohols by rat brain microsomes. J. Neurochem.30 (1978) 643–647.

    Article  CAS  PubMed  Google Scholar 

  4. Bishop, J.E., and Hajra, A.K., Mechanism and specificity of formation of long chain alcohols by developing rat brain. J. biol. Chem.256 (1981) 9542–9550.

    Article  CAS  PubMed  Google Scholar 

  5. Bognar, A.L., and Meighen, E.A., An induced aliphatic aldehyde dehydrogenase from the bioluminescent bacterium,Beneckea harveyi. J. biol. Chem.253 (1978) 446–450.

    Article  CAS  PubMed  Google Scholar 

  6. Bosron, W.F., and Prairie, R.L., Triphosphopyridine nucleotidelinked aldehyde reductase. J. biol. Chem.247 (1972) 4480–4485.

    Article  CAS  PubMed  Google Scholar 

  7. Bourre, J.M., and Daudu, O., Straryl-alcohol biosynthesis from strearyl-CoA in mouse brain microsomes in normal and dysmyelinating mutants (Quaking and Jimpy). Neurosci. Lett.7 (1978) 225–230.

    Article  CAS  PubMed  Google Scholar 

  8. Burton, R.M., and Stadtman, E.R., The oxidation of acetaldehyde to acetyl coenzyme A. J. biol. Chem.202 (1953) 873–890.

    Article  CAS  PubMed  Google Scholar 

  9. Byers, D., and Meighen, E.,Vibro harveyi aldehyde dehydrogenase: partial reversal of aldehyde oxidation and its possible role in the reduction of fatty acids for the bioluminescence reactions. J. biol. Chem.259 (1984) 7109–7114.

    Article  CAS  PubMed  Google Scholar 

  10. Carey, E.M., Carruthers, A., and Freeman, N., Plasmalogenase activity in isolated oligodendroglia-Subcellular location and regulation in the metabolism of myelin plasmalogen, in: Phospholipids in the nervous systemmetabolism, vol. 1, pp. 211–220. Eds L.A. Horrocks, G.B. Ansell and G. Porcellati. Raven Press, New York 1982.

    Google Scholar 

  11. Day, J.I.E., Goldfine, H., and Hagen, P.-O., Enzymic reduction of long-chain acyl-CoA fatty aldehyde and alcohol by extracts ofClostridium butyricum. Biochim. biophys. Acta218 (1970) 179–182.

    Article  CAS  PubMed  Google Scholar 

  12. Day, J.I.E., and Goldfine, H., Partial purification and properties of acyl-CoA reductase fromClostridium butyricum. Archs Biochem. Biophys.190 (1978) 322–331.

    Article  CAS  Google Scholar 

  13. Felsted, R.L., Bachur, N.R., Mammalian carboxyl reductases. Drug metab. Rev.2 (1980) 1–60.

    Article  Google Scholar 

  14. Fidge, N.H., and Goodman, D.S., The enzymatic reduction of retinal to retinol in rat intestine. J. biol. Chem.243 (1968) 4372–4379.

    Article  CAS  PubMed  Google Scholar 

  15. Finnery, W.R., The biochemistry of microbial alkane oxidations: new insights and perspectives. Trends biochem. Sci.2 (1977) 73–75.

    Article  Google Scholar 

  16. Fulco, A.J., Chain elongation, 20 hydroxylation, and decarboxylation of long chain fatty acids by yeast. J. biol. Chem.242 (1967) 3608–3613.

    Article  CAS  PubMed  Google Scholar 

  17. Galliard, T., Degradation of plants lipids by hydrolytic and oxidative enzymes, in: Recent advances in the chemistry and biochemistry of plant lipids, pp. 319–356, Eds T. Galliard and E.I. Mercer. Academic Press, London 1975.

    Google Scholar 

  18. Galliard, T., and Matthew, J.A., The enzymic formation of long chain aldehydes and alcohols by alpha-oxidation of fatty acids in extracts of cucumber fruit (Cucumis sativus). Biochim. biophys. Acta424 (1976) 26–35.

    Article  CAS  PubMed  Google Scholar 

  19. Galliard, T., and Matthew, J.A., Lipoxygenase-mediated cleavage of fatty acids to carbonyl fragments in tomato fruits. Phytochemistry16 (1977) 339–343.

    Article  CAS  Google Scholar 

  20. Galliard, T., Phillips, D.R., and Reynolds, J., The formation of cis-3-nonenal, trans-2-nonenal and hexanal from linoleic acid hydroperoxide isomers by a hydroperoxide cleavage enzyme system in cucumber (Cucumis sativus) fruits. Biochim. biophys. Acta441 (1976) 181–192.

    Article  CAS  PubMed  Google Scholar 

  21. Gilbertson, J.R., Ferrell, W.J., and Gelman, R.A., Isolation and analysis of free fatty aldehydes from rat, dog and bovine heart muscle. J. Lipid Res.8 (1967) 38–45.

    Article  CAS  PubMed  Google Scholar 

  22. Griffith, T.W., Sand, D.M., and Schlenk, H., Reduction of fatty acids to alcohols in roe of gourami (Trigogaster cosby). Biochim. biophys. Acta665 (1981) 34–39.

    Article  CAS  PubMed  Google Scholar 

  23. Grigor, M.R., Skin, in: Lipid metabolism in mammals, vol. 2, pp. 209–235. Ed. F. Snyder. Plenum Press, New York 1977.

    Chapter  Google Scholar 

  24. Groot, P.H.E., Scholte, H.R., and Hülsmann, W.C., Fatty acid activation: specificity, localization, and function. Adv. Lip. Res.14 (1976) 75–126.

    Article  CAS  Google Scholar 

  25. Gunawan, J., and Debuch, H., Liberation of free aldehyde from 1-(1-alkenyl)-sn-glycero-3-phosphoethanolamine (lysoplasmalogen) by rat liver microsomes. Hoppe-Seyler's Z. physiol. Chem.362 (1981) 445–452.

    Article  CAS  Google Scholar 

  26. Hitchcock, C.H.S., and Morris, L.J., The stereochemistry of α-oxidation of fatty acids in leaves. The formation of carbonyl intermediates. Eur. J. Biochem.17 (1970) 39–42.

    Article  CAS  PubMed  Google Scholar 

  27. Horrocks, L.A., Content, composition and metabolism of mammalian and avian lipids that contains ether groups, in: Ether lipids: Chemistry and Biology, pp. 177–272, Ed F. Snyder. Academic Press, New York 1972.

    Chapter  Google Scholar 

  28. Horton, A.A., and Barrett, M.C., The subcellular localization of aldehyde dehydrogenase in rat liver. Archs Biochem. Biophys.167 (1975) 426–436.

    Article  CAS  Google Scholar 

  29. Ishibashi, T., and Imai, Y., Solubilization and partial characterization of alkylglycerol monooxygenase from rat liver microsomes. Eur. J. Biochem.132 (1983) 23–27.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, R.C., and Gilbertson, J.R., Isolation, characterization, and partial purification of a fatty acyl Coenzyme A reductase from bovine cardiac muscle. J. biol. Chem.247 (1972) 6991–6998.

    Article  CAS  PubMed  Google Scholar 

  31. Jones, C.G., Young, A.M., Jones, T.H., and Blum, M.S., Chemistry and possible roles of cuticular alcohols of the larval atlas moth. Comp. Biochem. Physiol.73B (1982) 797–801.

    CAS  Google Scholar 

  32. Kawalek, J.C., and Gilbertson, J.R., Rartial purification of the NADPH-dependent aldehyde reductase from bovine cardiac muscle. Archs Biochem. Biophys.173 (1976) 649–657.

    Article  CAS  Google Scholar 

  33. Keenan, R.W., and Maxam, A., The in vitro degradation of dihydrosphingosine. Biochim. biophys. Acta176 (1969) 348–356.

    Article  CAS  PubMed  Google Scholar 

  34. Khan, A.A., and Kolattukudy, P.E., Control of synthesis and distribution of acyl moieties in etiolatedEuglena gracilis. Biochemistry12 (1973) 1939–1948.

    Article  CAS  PubMed  Google Scholar 

  35. Khan, A.A., and Kolattukudy, P.E., A microsomal fatty acid synthetase coupled to acyl-CoA reductase inEuglena gracilis. Archs Biochem. Biophys.158 (1973) 411–420.

    Article  CAS  Google Scholar 

  36. Khan, A.A., and Kolattukudy, P.E., Solabilization of fatty acid synthetase, acyl-CoA reductase, and fatty acyl-CoA alcohol transacylase from the microsomes ofEuglena gracilis. Archs Biochem. Biophys.170 (1975) 400–408.

    Article  CAS  Google Scholar 

  37. Kolattukudy, P.E., Plant waxes. Lipids5 (1970) 259–275.

    Article  CAS  Google Scholar 

  38. Kolattukudy, P.E., Enzymatic synthesis of fatty alcohols inBrassica oleracea. Archs Biochem. Biophys142 (1971) 701–709.

    Article  CAS  Google Scholar 

  39. Kolattukudy, P.E., Reduction of fatty acids to alcohols by cell-free preparations ofEuglena gracilis. Biochemistry9 (1970) 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  40. Kolattukudy, P.E., and Rogers, L., Biosynthesis of fatty alcohols, alkane-1,2-diols and was esters in particulate preparations from the uropygial glands of white-crowned sparrows (Zonotrichia leucophyrs). Arch. Biochem. Biophys.191 (1978) 244–258.

    Article  CAS  PubMed  Google Scholar 

  41. Kolattukudy, P.E., Rogers, L., and Larson, J.D., Enzymatic reduction of fatty acids and α-hydroxy fatty acids. Meth. Enzym.71 (1981) 263–275.

    Article  CAS  PubMed  Google Scholar 

  42. Lange, G., Sytkowski, A.J., and Vallee, B.L., Human liver alcohol dehydrogenase: purification, composition, and catalytic features. Biochemistry15 (1976) 4687–4693.

    Article  CAS  PubMed  Google Scholar 

  43. Lebeault, J.M., Roche, B., Duvnjak, Z., and Azoulay, E., Alcoolet aldéhyde-déshydrogénases particulaires deCandida tropicalis cultivé sur hydrocarbures. Biochim. biophys. Acta220 (1970) 373–385.

    Article  CAS  PubMed  Google Scholar 

  44. Lee, T.-C., Characterization of fatty alcohol:NAD+ oxidoreductase from rat liver. J. biol. Chem.254 (1979) 2892–2896.

    Article  CAS  PubMed  Google Scholar 

  45. Lee, T.-C., Fitzgerald, V., Stephens, N., and Snyder, F., Activities of enzymes involved in the metabolism of ether-linked lipids in normal and neoplastic tissues of rat. Biochim. biophys. Acta619 (1980) 420–423.

    Article  CAS  PubMed  Google Scholar 

  46. Lee, T.-C., and Snyder, F., Cancer cells, in: Lipid Metabolism in Mammals, vol. 2, pp. 293–310. Ed. F. Snyder. Plenum Press, New York 1977.

    Chapter  Google Scholar 

  47. Londesborough, J.C., and Webster, L.T. Jr, Fatty acyl-CoA synthetases, in: The Enzymes, vol. 10, pp. 469–488. Ed. P.D. Boyer. Academic Press, New York 1974.

    Google Scholar 

  48. Mahadevan, V., Fatty alcohols: chemistry and metabolism. Prog. Chem. Fats15 (1978) 255–299.

    Article  CAS  Google Scholar 

  49. Mangold, A., and Langerman, N., The enthalpy of oxidation of flavin mononucleotide. Temperature dependence of in vitro bacterial luciferase bioluminescence. Archs Biochem. Biophys.169 (1975) 126–133.

    Article  CAS  Google Scholar 

  50. Martin, R.O., and Stumpf, P.K., Fat metabolism in higher plants XII, α-oxidation of log chain fatty acids. J. biol. Chem.234 (1959) 2548–2554.

    Article  CAS  PubMed  Google Scholar 

  51. Matthew, J.A., Chan, H.W-S., and Galliard, T., A simple method for the preparation of pure 9-D-hydroperoxide of linoleic acid and methyl linoleate based on the positional specificity of lipoxygenase in tomato fruit. Lipids12 (1977) 324–326.

    Article  CAS  PubMed  Google Scholar 

  52. Meighen, E.A., Biosynthesis of aliphatic aldehydes for the bacterial bioluminescent reaction. Stimulation by ATP and NADPH. Biochem. biophys. Res. Commun.87 (1979) 1080–1086.

    Article  CAS  PubMed  Google Scholar 

  53. Meighen, E.A., Slessor, K.N., and Grant, G.G., A bioluminescent assay for aldehyde sex pheromones of inseacts. Experientia37 (1981) 555–556.

    Article  CAS  Google Scholar 

  54. Moreau, R.A., and Huang, A.H.C., Oxidation of fatty alcohol in the cotyledons of jojoba seedlings. Archs Biochem. Biophys.194 (1979) 422–430.

    Article  CAS  Google Scholar 

  55. Naccarato, W.F., Gelman, R.A., Kawalek, J.C., and Gilbertson, J.R., Characterization and metabolism of free fatty alcohols fromEscherichia coli. Lipids7 (1972) 275–281.

    Article  CAS  PubMed  Google Scholar 

  56. Nakayasu, H., Mihara, K., and Sato, R., Purification and properties of a membrane-bound aldehyde dehydrogenase from rat liver microsomes. Biochem. biophys. Commun.83 (1978) 697–703.

    Article  CAS  Google Scholar 

  57. Natarajan, V., and Sastry, P.S., Conversion of [1-14C] palmitic acid to [1-14C] hexadecanol by developing rat brain cell-free preparations. J. Neurochem.26 (1976) 107–113.

    CAS  PubMed  Google Scholar 

  58. Natarajan, V., and Schmid, H.H.O., Substratesspecificities in ether lipid biosynthesis. Metabolism of polyunsaturated fatty acids and alcohols by rat brain microsomes. Biochem. biophys. Res. Commun.79 (1977) 411–416.

    Article  CAS  PubMed  Google Scholar 

  59. Nevenzel, J.C., Occurrence, function and biosynthesis of was esters in marine organisms. Lipids5 (1970) 308–319.

    Article  CAS  PubMed  Google Scholar 

  60. Nilsson, A., Convesion of dihydrosphingosin to palmitaldehyde and palmitic acid with cell-free preparation of guinea pig intestinal mucosa. Acta chem. scand.24 (1970) 598–604.

    Article  CAS  PubMed  Google Scholar 

  61. Pfleger, R.C., Piantodosi, C., and Snyder, F., The biocleavage of isomeric glyceryl ethers by soluble liver enzymes in a variety of species. Biochim. biophys. Acta144 (1967) 633–648.

    Article  CAS  PubMed  Google Scholar 

  62. Pietruszko, R., Crawford, K., and Lester, D., Comparison of substrate specificity of alcohol dehydrogenases from human liver, horse liver, and yeast towards saturated and 2-enoic alcohols and aldehydes. Archs Biochem. Biophys.159 (1973) 50–60.

    Article  CAS  Google Scholar 

  63. Pollard, M.R., McKeon, T., Gupta, L.M., and Stumpf, P.K., Studies on the biosynthesis of waxes by developing jojoba seed. 2. The demonstration of was biosynthesis by cell-free homogenates. Lipids14 (1979) 651–662.

    Article  CAS  Google Scholar 

  64. Racker, E., Crystalline alcohol dehydrogenase from baker's yeast. J. biol. Chem.184 (1950) 313–319.

    Article  CAS  PubMed  Google Scholar 

  65. Ratledge, C., Degradation of aliphatic hydrocarbons, in; Developments in biodegradation of hydrocarbons-I, pp. 1–46. Ed. R.J. Watkinson. Applied Science Publishers, London 1978.

    Google Scholar 

  66. Ray, T.K., and Cronan, J.E., Activation of long chain fatty acids with acyl carrier proteins: demonstration of a new enzyme, acylacyl carrier protein synthetase, inEscherichia coli. Proc. natn. Acad. Sci. USA73 (1976) 4374–4378.

    Article  CAS  Google Scholar 

  67. Riendeau, D., and Meighen, E., Evidence for a fatty acid reductase catalyzing the synthesis of aldehydes for the bacterial bioluminescent reaction. J. biol. Chem.254 (1979) 7488–7490.

    Article  CAS  PubMed  Google Scholar 

  68. Riendeau, D., and Meighen, E., Co induction of fatty acid reductase luciferase during development of bacterial bioluminescence. J. biol. Chem.255 (1980) 12060–12065.

    Article  CAS  PubMed  Google Scholar 

  69. Riendeau, D., and Meighen, E., Fatry acid reductase in bioluminescent bacteria. Resolution from aldehyde reductases and characterization of the aldehyde product. Can. J. Biochem.59 (1981) 440–446.

    Article  CAS  PubMed  Google Scholar 

  70. Riendeau, D., Rodriguez, A., and Meighen, E., Resolution of the fatty acid reductase fromPhotobacterium phosphoreum into acyl protein synthetase and acyl-CoA reductase activities. J. biol. Chem.527 (1982) 6908–6915.

    Article  Google Scholar 

  71. Rock, C.O., Harderian gland, in: Lipid metabolism in mammals, vol. 2, pp. 331. Ed. F. Snyder, Plenum Press, New York 1977.

    Google Scholar 

  72. Rock, C.O., Fitzgerald, V., and Snyder, F., Coupling of the biosynthesis of fatty acids and fatty alcohols. Archs Biochem. Biophys.186 (1978) 77–83.

    Article  CAS  Google Scholar 

  73. Rodriguez, A., Riendeau, D., and Meighen, E., Pufification of the acyl-CoA reductase from a complex responsible for the reduction of fatty acids in bioluminescent bacteria. J. biol. Chem.258 (1983) 5233–5237.

    Article  CAS  PubMed  Google Scholar 

  74. Rodriguez, A., Wall, L., Riendeau, D., and Meighen, E., Fatty acid acylation of proteins in bioluminescent bacteria. Biochemistry22 (1983) 5604–5611.

    Article  CAS  Google Scholar 

  75. Rogers, L., Kolattukudy, P.E., and deRenobles, M., Purification and characterization of S-acyl fatty acid synthase thioester hydrolase which modifies the product specificity of fatty acid synthase in the uropygial gland of mallards. J. biol. Chem.257 (1982) 880–886.

    Article  CAS  PubMed  Google Scholar 

  76. Ryan, R.O., deRonables, M., Dillwith, J.W., Hiesler, C.R., and Blomquist, G.J., Biosynthesis of myristate in an aphid: involvement of a specific acylthioesterase. Archs Biochem. Biophys.213 (1982) 26–36.

    Article  CAS  Google Scholar 

  77. Shimomura, O., Johnson, F. H., and Morise, H., The aldehyde content of luminous bacteria and of an ‘aldehyless’ dark mutant. Proc. natn. Acad. Sci. USA71 (1974) 4666–4669.

    Article  CAS  Google Scholar 

  78. Siew, C., Dietrich, R. A., and Erwin, V. G., Localization and characteristics of rat liver mitochondrial aldehyde dehydrogenases. Archs Biochem. Biophys.176 (1976) 638–649.

    Article  CAS  Google Scholar 

  79. Snyder, F., Enzymatic systems that synthesize and degrade glycerolipids possessing ether bonds. Adv. Lipid Res.10 (1972) 233–259.

    Article  CAS  PubMed  Google Scholar 

  80. Snyder, F., Ether-linked lipids and fatty alcohol precursors in neoplasms, in: Ether lipids: chemistry and biology, pp. 273–295. Ed. F. Snyder. Academic Press, New York 1972.

    Chapter  Google Scholar 

  81. Snyder, F., and Malone, B., Enzymic interconversion of fatty alcohols and fatty acids. Biochem. biophys. Res. Commun.41 (1970) 1382–1387.

    Article  CAS  PubMed  Google Scholar 

  82. Soodsma, J. F., Piantadosi, C., and Snyder, F., Partial characterization of the alkylglycerol cleavage enzyme system of rat liver. J. biol. Chem.247 (1972) 3923–3929.

    Article  CAS  PubMed  Google Scholar 

  83. Stoffel, W., Sphingolipids. A. Rev. Biochem.40 (1971) 57–82.

    Article  CAS  Google Scholar 

  84. Stoffel, W., and Assmann, G., Enzymatic degradation of 4t-sphingenine 1-phosphate (sphingosine 1-phosphate) to 2t-hexadecen-1-al and ethanolamine phosphate. Hoppe-Seyler's Z. physiol. Chem.351 (1970) 1041–1049.

    Article  CAS  Google Scholar 

  85. Stoffel, W., LeKim, D., and Heyn, G., Sphinganine (dihydrosphingosine), and effective donor of the alk-1-enyl chain of plasmalogens. Hoppe-Seyler's Z. physiol. Chem.351 (1970) 875–883.

    Article  CAS  Google Scholar 

  86. Stoffel, W., and Sticht, G., and LeKim, D., Degradation in vitro of dihydrosphingosine and dihydrosphingosine phosphate to palmitaldehyde and ethanolamine phosphate. Hoppe-Seyler's Z. physiol. Chem.349 (1969) 1745–1748.

    Article  Google Scholar 

  87. Stokes, G. B., and Stumpf, P. K., Fat metabolism in higher plants: the nonenzymatic acylation of dithiothreitol by acyl Coenzyme A. Archs Biochem. Biophys.162 (1974) 638–648.

    Article  CAS  Google Scholar 

  88. Sund, H., and Theorell, H., Alcohol dehydrogenases, in: The enzymes, vol. 1, pp. 25–83, Eds. P. D. Boyer, H. Lardy and K. Myrback. Academic Press, New York 1963.

    Google Scholar 

  89. Takaboff, B., and Erwin, V. G., Purification and characterization of a reduced nicotinamide adenine dinucleotide phosphate-linked aldehyde reductase from brain. J. biol. Chem.245 (1970) 3263–3268.

    Article  Google Scholar 

  90. Takahashi, T., and Schmid, H. H. O., Long-chain alcohols in mammalian tissues. Chem. Phys. Lipids4 (1970) 243–246.

    Article  CAS  PubMed  Google Scholar 

  91. Thyagarajan, K., Sand, D. M., Brockman, H. L., and Schlenk, H., Oxidation of fatty alcohols to acids in the caecum of a gourami (Trichogaster cosby). Biochim. biophys. Acta575 (1979) 318–326.

    Article  CAS  PubMed  Google Scholar 

  92. Tietz, A., Lindberg, M., and Kennedy, E. P., A new pteridinerequiring enzyme system for the oxidation of glyceryl ethers. J. biol. Chem.239 (1964) 4081–4090.

    Article  CAS  PubMed  Google Scholar 

  93. Tulloch, A. P., The composition of beewax and other waxes secreted by insects. Lipids5 (1970) 247–258.

    Article  CAS  Google Scholar 

  94. Turner, A. J., and Whittle, S. R., Functions of aldehyde reductases. Biochem. Soc. Trans.9 (1981) 279–281.

    Article  CAS  PubMed  Google Scholar 

  95. Ulitzur, S., and Hastings, J. W., Reversible inhibition of bacterial bioluminescence by long-chain fatty acids. Curr. Microbiol.3 (1980) 295–300.

    Article  CAS  Google Scholar 

  96. Vignais, P. V., and Zabin, I., Formation d'aldéhyde palmitique dans le cerveau de rat, in: Biochemistry of Lipids, pp. 78–84. Ed. G. Popjak. Pergamon Press, New York 1958.

    Google Scholar 

  97. von Wartburg, J., Papenberg, J., and Aebi, H., An atypical human alcohol dehydrogenase. Can. J. Biochem.43 (1965) 889–898.

    Article  Google Scholar 

  98. von Wartburg, J. P., and Wermuth, B., Aldehyde reductase, in: Enzymatic basis of detoxication, vol. 1, pp. 249–260. Ed. W. B. Jakoby. Academic Press, New York 1980.

    Chapter  Google Scholar 

  99. Wall, L., Rodriguez, A., and Meighen, E., Differential acylation in vitro with tetradecanoyl coenzyme A and tetradecanoic acid (+ATP) of three polypeptides shown to have induced synthesis inPhotobacterium phosphoreum. J. biol. Chem.259 (1984) 1409–1414.

    Article  CAS  PubMed  Google Scholar 

  100. Wang, L., Tokayama, K., Goldman, D. S., and Schnoes, H. K., Synthesis of alcohol and wax ester by a cell-free system inMycobacterium tuberculosis. Biochim. biophys. Acta260 (1972) 41–48.

    Article  CAS  PubMed  Google Scholar 

  101. Warner, H. R., and Lands, W. E. M., The metabolism of plasmalogen: enzymatic hydrolysis of the vinyl ether. J. biol. Chem.236 (1961) 2404–2409.

    Article  CAS  PubMed  Google Scholar 

  102. Weber, N., and Richter, I., Formation of ether lipids and wax esters in mammalian cells. Specificity of enzymes with regard to carbon chains of substrates. Biochim. biophys. Acta711 (1982) 197–207.

    Article  CAS  PubMed  Google Scholar 

  103. Wittenberg, J. B., Korey, S. R., and Swenson, F. H., The determination of higher fatty aldehydes in tissues. J. biol. Chem.219 (1956) 39–47.

    Article  CAS  PubMed  Google Scholar 

  104. Wykle, R. L., Malone, B., and Snyder, F., Acyl-CoA reductase specificity and synthesis of wax esters in mouse preputial tumors. J. Lipid Res.20 (1979) 890–896.

    Article  CAS  PubMed  Google Scholar 

  105. Wykle, R. L., and Snyder, F., Microsomal enzymes involved in the metabolism of ether-linked glycerolipids and their precursors in mammals, in: The enzymes of biological membranes, pp. 87–117. Ed. A. Martonosi. Plenum Press, New York 1976.

    Chapter  Google Scholar 

  106. Ziegler, M. M., and Baldwin, T. O., Biochemistry of bacterial bioluminescence. Curr. Top. Bioenerg.12 (1981) 65–113.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riendeau, D., Meighen, E. Enzymatic reduction of fatty acids and acyl-CoAs to long chain aldehydes and alcohols. Experientia 41, 707–713 (1985). https://doi.org/10.1007/BF02012564

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02012564

Key words

Navigation