Skip to main content
Log in

Endocrine and molecular biological studies in a German family with Albright hereditary osteodystrophy

  • Endocrinology
  • Original Papers
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

We examined a German family with five members affected by Albright hereditary osteodystrophy (AHO). The only patient with pseudohypoparathyroidism type Ia (PHP-Ia) presented clinically with latent tetany, mental retardation, round face, short stature, brachymetacarpia and calcifications of subcutaneous tissue, heart and brain, whereas all other four members with pseudopseudohypoparathyroidism (pseudo-PHP) showed only subcutaneous calcifications and brachymetaphalangia. The PHP-Ia patient exhibited hypocalcaemia, hyperphosphataemia, elevated immunoreactive parathyroid hormone (PTH), and a blunted response of cyclic adenosine monophosphate (cAMP) in plasma and urine to synthetic 1-38 hPTH. In addition, latent primary hypothyroidism was found. In contrast, all tested healthy family members as well as the patients with pseudo-PHP exhibited normal calcium metabolism including cAMP response to exogenous PTH. In Northern blot experiments all patients with AHO, regardless whether affected by PHP-Ia or pseudo-PHP, revealed significantly reduced mRNA levels coding for the α subunit of the G protein that stimulates adenylyl cyclase (G), when compared with healthy family members. In contrast, there was no significant difference between healthy and affected subjects with regard to the levels of the mRNA coding for the α subunit of Giα-2, the main inhibitory G protein of adenylyl cyclase. The results indicate that reduced expression of G is a useful genetic marker in some families with AHO, regardless whether patients are affected by PHP-Ia or by pseudo-PHP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AHO:

Albright hereditary osteodystrophy

B-LCL:

EBV-transformed lymphoblastoid B-cell line

cAMP:

adenosine monophosphate

G :

alpha subunit of the G protein that inhibits the adenylyl cyclase

G :

alpha subunit of the G protein that stimulates the adenylyl cyclase

1-38 hPTH:

synthetic amino-terminal fragment 1–38 from human PTH

PHP-Ia:

pseudohypoparathyroidism type Ia

pseudo-PHP:

pseudopseudohypoparathyroidism

PTH:

parathyroid hormone

TSH:

thyroid-stimulating hormone, thyrotropin

References

  1. Albright F, Burnett CH, Smith PH (1942) Pseudohypoparathyroidism: an example of “Seabright-Bantam syndrome”. Endocrinology 30:922–932

    Google Scholar 

  2. Albright F, Forbes AP, Henneman PH (1952) Pseudopseudo-hypoparathyroidism. Trans Assoc Am Physicians 65:337–350

    PubMed  Google Scholar 

  3. Alonso S, Minty A, Bourlet Y, Buckingham M (1986) Comparison of three actin-coding sequences in the mouse; evolutionary relationships between the actin genes of warm-blooded vertebrates. J Mol Evol 23:11–22

    PubMed  Google Scholar 

  4. Barrett D, Breslau NA, Wax MB, Molinoff PB, Downs RW (1989) New form of pseudohypoparathyroidism with abnormal catalytic adenylate cyclase. Am J Physiol 257:E277-E283

    PubMed  Google Scholar 

  5. Breslau NA (1989) Pseudohypoparathyroidism: current concepts. Am J Med Sci 298:130–140

    PubMed  Google Scholar 

  6. Carter A, Bardin C, Collins R, Simons C, Bray P, Spiegel A (1987) Reduced expression of multiple forms of the α subunit of the stimulatory GTP-binding protein in pseudohypoparathyroidism type Ia. Proc Natl Acad Sci USA 84:7266–7269

    PubMed  Google Scholar 

  7. Chase LR, Melson GL, Aurbach GD (1969) Pseudohypoparathyroidism: defective excretion of 3′, 5′-AMP in response to parathyroid hormone. J Clin Invest 48:1832–1844

    PubMed  Google Scholar 

  8. Davis LG, Dibner MD, Battey JF (1986) Basic methods in molecular biology. Elsevier, New York, pp 1–388

    Google Scholar 

  9. Downs RW, Sekura RD, Levine MA, Spiegel AM (1985) The inhibitory adenylate cyclase coupling protein in pseudohypoparathyroidism. J Clin Endocrinol Metab 61:351–354

    PubMed  Google Scholar 

  10. Eschenhagen T, Mende U, Nose M, Schmitz M, Scholz H, Warnholtz A, Wüstel JM (1991) Isoprenalin-induced increase in mRNA levels of inhibitory G-protein α-subunits in rat heart. Naunyn Schmiedebergs Arch Pharmacol 343:609–615

    Article  PubMed  Google Scholar 

  11. Ishikawa J, Bianchi C, Nadal-Ginard B, Homcy CI (1990) Alternative promoter and 5′ exon generate a novel G-mRNA. J Biol Chem 265:8458–8462

    PubMed  Google Scholar 

  12. Jones DT, Reed RR (1987) Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem 29:14241–14249

    Google Scholar 

  13. Koch T, Lehnhardt E, Bottinger H, Pfeuffer T, Palm D, Fischer S, Radeke H, Hesch RD (1990) Sensineural hearing loss owing to deficient G proteins in patients with pseudohypoparathyroidism: results of a multicentre study. Eur J Clin Invest 20:416–421

    PubMed  Google Scholar 

  14. Kroczek RA, Siebert E (1990) Optimization of Northern analysis by vacuum-blotting, RNA-transfer visualization, and ultraviolet fixation. Anal Biochem 184:90–95

    Article  PubMed  Google Scholar 

  15. Kruse K, Kracht U (1987) A simplified diagnostic test in hypoparathyroidism and pseudohypoparathyroidism type I with synthetic 1–38 fragment of human parathyroid hormone. Eur J Pediatr 146:373–377

    Article  PubMed  Google Scholar 

  16. Levine MA, Downs RW Jr, Moses AM, Breslau NA, Marx SJ, Lasker RD, Rizzoli RE, Aurbach GD, Spiegel AM (1983) Resistance to multiple hormones in patients with pseudohypoparathyroidism and deficient guanine nucleotide regulatory protein. Am J Med 74:545–556

    Article  PubMed  Google Scholar 

  17. Levine MA, Jap TS, Hung W (1985) Infantile hypothyroidism in two sibs: an unusual presentation of pseudohypoparathyroidism type Ia. J Pediatr 107:919–922

    PubMed  Google Scholar 

  18. Levine MA, Jap TS, Mauseth RS, Downs RW, Spiegel AM (1986) Activity of the stimulatory guanine nucleotide-binding protein is reduced in erythrocytes from patients with pseudohypoparathyroidism and pseudopseudohypoparathyroidism: biochemical, endocrine, and genetic analysis of Albright's hereditary osteodystrophy in six kindreds. J Clin Endocrinol Metab 62:497–502

    PubMed  Google Scholar 

  19. Levine MA, Ahn TG, Klupt SF, Kaufman KD, Smallwood PM, Bourne HR, Sullivan KA, Dop C van (1988) Genetic deficiency of the α subunit of the guanine nucleotide-binding protein Gs as the molecular basis for Albright hereditary osteodystrophy. Proc Natl Acad Sci USA 85:617–621

    PubMed  Google Scholar 

  20. Mann JB, Alterman S, Hills AG (1962) Albright's hereditary osteodystrophy compringsing pseudohypoparathyroidism and pseudopseudohypoparathyroidism with a report of two cases representing the complete syndrome occuring in successive generations. Ann Intern Med 56:315–342

    PubMed  Google Scholar 

  21. Patten JL, Johns DR, Valle D, Eil C, Gruppuso PA, Steele G, Smallwood PM, Levine MA (1990) Mutation in the gene encoding the stimulatory G protein of adenylate cyclase in Albright's hereditary osteodystrophy. N Engl J Med 20:1412–1419

    Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning — a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  23. Schuster V, Sandhage K (1992) Intracardiac calcifications in a case of pseudohypoparathyroidism type Ia (PHP-Ia). Pediatr Cardiol 13:237–239

    Article  PubMed  Google Scholar 

  24. Spiegel AM (1989) Pseudohypoparathyroidism. In: Scriver CR, et al (eds) The metabolic basis of inherited diseases, 6th edn. McGraw-Hill Inc., New York, p 2013–2027

    Google Scholar 

  25. Spiegel AM (1990) Albright's hereditary osteodystrophy and defective G proteins. N Engl J Med 20:1461–1462

    Google Scholar 

  26. Weinstein LS, Gejman PV, Friedman E, Kadowaki T, Collins RM, Gershon ES, Spiegel AM (1990) Mutations of the Gs alpha-subunit gene in Albright hereditary osteodystrophy detected by denaturing gradient gel electrophoresis. Proc Natl Acad Sci USA 87:8287–8290

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, V., Eschenhagen, T., Kruse, K. et al. Endocrine and molecular biological studies in a German family with Albright hereditary osteodystrophy. Eur J Pediatr 152, 185–189 (1993). https://doi.org/10.1007/BF01956140

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01956140

Key words

Navigation