Skip to main content
Log in

Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Fusion of phosphatidylserine vesicles induced by divalent cations, temperature and osmotic pressure gradients across the membrane was studied with respect to variations in vesicle size. Vesicle fusion was followed by two different methods: 1) the Tb/DPA fusion assay, whereby the fluorescent intensity upon mixing of the internal aqueous contents of fused lipid vesicles was monitored, and 2) measurement of the changes in turbidity of the vesicle suspension due to vesicle fusion. It was found that the threshold concentration of divalent cations necessary to induce vesicle fusion depended on the size of vesicles; as the diameter of the vesicle increased, the threshold value increased and the extent of fusion became less. For the osmotic pressure-induced vesicle fusion, the larger the diameter of vesicles, the smaller was the osmotic pressure gradient required to induce membrane fusion. Divalent cations, temperature increase and vesicle membrane expansion by osmotic pressure gradient all resulted in increase in surface energy (tension) of the membrane. The degree of membrane fusion correlated with the corresponding surface energy changes of vesicle membranes due to the above fusion-inducing agents. The increase in surface energy of 9.5 dyn/cm from the reference state corresponded to the threshold point of phosphatidylserine membrane fusion. An attempt was made to explain the factors influencing fusion phenomena on the basis of a single unifying theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahkong, Q.F., Cramp, F.C., Fisher, D., Howell, J.I., Tampion, W., Verrinder, M., Lucy, J.A. 1973. Chemically-induced and thermally-induced cell fusion: Lipid-lipid interaction.Nature (London) 242:215–217

    Google Scholar 

  2. Ahkong, Q.F., Fisher, D., Tampion, W., Lucy, J.A. 1975. Mechanism of cell fusion.Nature (London) 253:194–195

    Google Scholar 

  3. Bearer, E.L., Düzgünes, N., Friend, D.S., Papahadjopoulos, D. 1982. Fusion of phospholipid vesicles arrested by quickfreezing: The question of lipidic particles as intermediates in membrane fusion.Biochim. Biophys. Acta 693:93–98

    Google Scholar 

  4. Breisblatt, W., Ohki, S. 1975. Fusion in phospholipid spherical membranes. I. Effect of temperature and lysolecithin.J. Membrane Biol. 23:385–401

    Google Scholar 

  5. Breisblatt, W., Ohki, S. 1976. Fusion in phospholipid sperical membranes. II. Effect of cholesterol, divalent ions and pH.J. Membrane Biol. 29:127–146

    Google Scholar 

  6. Chaudhury, M., Ohki, S. 1981. Correlation between membrane expansion and temperature-induced membrane fusion.Biochim. Biophys. Acta 642:365–374

    Google Scholar 

  7. Cohen, F.S., Zimmerberg, J., Finkelstein, A. 1980. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes: II. Incorporation of a vesicular membrane marker into the planar membrane.J. Gen. Physiol. 75:251–270

    Google Scholar 

  8. Cullis, P.R., Hope, M.J. 1978. Effect of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion.Nature (London) 271:672–674

    Google Scholar 

  9. Cullis, P.R., Verkleij, A.J. 1979. Modulation of membrane structure by Ca2+ and dibucaine as detected by31P NMR.Biochim. Biophys. Acta 552:546–551

    Google Scholar 

  10. Davies, J.T., Rideal, E.K. 1961. Interfacial Phenomena. p. 17. Academic, New York-London

    Google Scholar 

  11. De Gier, J., Mandersloot, J.G., Van Deenen, L.L.M. 1968. Lipid composition and permeability of liposomes.Biochim. Biophys. Acta 150:666–675

    Google Scholar 

  12. Dodge, J.T., Mitchell, C., Hanahan, D.J. 1963. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes.Arch. Biochem. Biophys. 100:119–130

    Google Scholar 

  13. Düzgünes, N., Ohki, S. 1977. Calcium-induced interaction of phospholipid vesicles and bilayer lipid membranes.Biochim. Biophys. Acta 467:301–308

    Google Scholar 

  14. Ekerdt, R., Papahadjopoulos, D. 1982. Intermembrane contact affects calcium binding to phospholipid vesicles.Proc. Natl. Acad. Sci. USA 79:2273–2277

    Google Scholar 

  15. Hui, S.W., Stewart, T.P., Boni, L.T., Yeagle, P.L. 1981. Membrane fusion through point defects in bilayers.Science 212:921–923

    Google Scholar 

  16. Jacobson, K., Papahadjopoulos, D., 1975. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH and concentration of bivalent cations.Biochemistry 14:152–161

    Google Scholar 

  17. Knutton, S. 1979. Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol.J. Cell Sci. 36:61–72

    Google Scholar 

  18. Liao, M.J., Prestegard, J.H. 1979. Fusion of phosphotidic acid-phosphatidylcholine mixed lipid vesicles.Biochim. Biophys. Acta 550:157–173

    Google Scholar 

  19. Lichtenberg, D., Freire, E., Schmidt, C.F., Barenholz, Y., Felgner, P.L., Thompson, T.E. 1981. Effect of surface curvature on stability, thermodynamic behavior, and osmotic activity of dipolmitolphosphatidylcholine single lamellar.Biochemistry 20:3462–3467

    Google Scholar 

  20. Lucy, J.A. 1970. The fusion of biological membranes.Nature (London) 227:814–817

    Google Scholar 

  21. Miller, C., Arvan, P., Telford, J.N., Racker, E. 1976. Ca2+-induced fusion of proteoliposomes: Dependence on transmembrane osmotic gradient.J. Membrane Biol. 30:271–282

    Google Scholar 

  22. Ohki, S. 1982. A mechanism of divalent ion-induced phosphatidylserine membrane fusion.Biochim. Biophys. Acta 689:1–11

    Google Scholar 

  23. Ohki, S., Aono, O. 1970. Phospholipid bilayer-micelle transformation.J. Colloid Interface Sci. 32:270–281

    Google Scholar 

  24. Ohki, S., Düzgünes, N. 1979. Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes.Biochim. Biophys. Acta 552:438–449

    Google Scholar 

  25. Papahadjopoulos, D., Poste, G., Schaffer, B.E., Vail, W.J. 1974. Membrane fusion and molecular segregation in phospholipid vesicles.Biochim. Biophys. Acta,352:10–28

    Google Scholar 

  26. Papahadjopoulos, D., Vail, W.J., Jacobson, K., Poste, G. 1975. Cochleate lipid cylinders: Formation by fusion of unilamellar lipid vesicles.Biochim. Biophys. Acta 394:483–491

    Google Scholar 

  27. Papahadjopoulos, D., Vail, W.J., Newton, C., Nir, S., Jacobson, K., Poste, G., Lazo, R. 1977. Studies on membrane fusion: III. The role of calcium-induced phase changes.Biochim. Biophys. Acta,465:579–598

    Google Scholar 

  28. Portis, A., Newton, C., Pangborn, W., Papahadjopoulos, D. 1979. Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+ and inhibition by spectrin.Biochemistry 18:780–790

    Google Scholar 

  29. Poste, G., Nicolson, G.L., editors. 1978. Membrane Fusion. Elsevier/North-Holland, Amsterdam-New York

    Google Scholar 

  30. Rouser, G., Bauman, A.J., Kritchevsky, G., Heller, D., O'Brien, J.S. 1961. Quantitative chromatographic fractionation of complex lipid mixtures: Brain lipids.J. Am. Oil Chem. Soc. 38:544–555

    Google Scholar 

  31. Schullery, S.E. Schmidt, C.F., Felgner, P., Tillack, T.W., Thompson, T.E. 1980. Fusion of dipalmitoyl-phosphatidylcholine vesicles.Biochemistry 19:3919–3923

    Google Scholar 

  32. Szoka, F., Jr., Papahadjopoulos, D. 1978. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.Proc. Natl. Acad. Sci. USA 75:4194–4198

    Google Scholar 

  33. Tien, T., Diana, A.L. 1967. Some physical properties of biomolecular lipid membranes produced from new lipid solutions.Nature (London) 215:1199–1200

    Google Scholar 

  34. Träuble, H., Eibl, H. 1974. Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment.Proc. Natl. Acad. Sci. USA 711:214–219

    Google Scholar 

  35. Verkleij, A.J., Mombers, C., Gerritsen, W.J., Leunissen-Bijvelt, L., Cullis, P.R. 1979. Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized in freeze fracturing.Biochim. Biophys. Acta 555:358–361

    Google Scholar 

  36. Verklejj, A.J., Van Echteld, C.J.A., Gerritsen, W.J., Cullis, P.R., DeKruijff, B. 1980. The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions.Biochim. Biophys. Acta 600:620–624

    Google Scholar 

  37. Whittaker, V.P., Barker, L.A. 1972. Subcellular fractionation of brain tissue.Methods Neurochem. 2:12–45

    Google Scholar 

  38. Wilschut, J., Düzgünes, N., Fraley, R., Papahadjopoulos, D. 1980. Studies on the mechanism of membrane fusion: Kinetics of Ca ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents.Biochemistry 19:6011–6021

    Google Scholar 

  39. Wilschut, J., Düzgünes, N., Papahadjopoulos, D., 1981. Calcium/magnesium specifccity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature.Biochemistry 20:3126–3133

    Google Scholar 

  40. Wilschut, J., Papahadjopoulos, D. 1979. Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents.Nature (London) 281:690–692

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohki, S. Effects of divalent cations, temperature, osmotic pressure gradient, and vesicle curvature on phosphatidylserine vesicle fusion. J. Membrain Biol. 77, 265–275 (1984). https://doi.org/10.1007/BF01870574

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870574

Key Words

Navigation