Skip to main content
Log in

High-speed video analysis of the flagellar beat and swimming patterns of algae: possible evolutionary trends in green algae

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The flagellar beat and swimming patterns of flagellated cells of 22 green plants, including 17 green flagellates (volvocalean and prasinophyte algae), motile cells of three seaweeds,Bryopsis, Caulerpa, andUlva, sperms of a liverwort,Marchantia, and a fern,Athyrium, were examined using a high-speed video system. So-called breast-stroke is widely distributed in green plants, and occurs rarely in prasinophyte flagellates and ulvophycean algae; in these algal groups flagellar beat similar to that found in animal sperm is common, both during forward and backward swimming. Different types of swimming patterns were observed in prasinophytes. The results indicate evolutionary trends of flagellar beat and swimming patterns in green plants such as change from backward to forward swimming, from flagellar to ciliary beating and from uni-directional (parallel) to radial-directional (cruciate) beating. Such trends are shown in two prasinophyte groups, thePyramimonas-lineage andTetraselmis-lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belcher JH (1964) Further notes onScourfieldia caeca. Br Phycol Bull 2: 371–373

    Google Scholar 

  • — (1969) Further observations on the type species ofPyramimonas (P. tetrarhynchus Schmarda) (Prasinophyceae): an examination by light microscopy, together with notes on its taxonomy. Bot J Linn Soc 62: 241–253

    Google Scholar 

  • Boalch GT, Parke M (1971) The prasinophycean genera (Chlorophyta) possibly related to fossil genera, in particular the genusTasmanites. In: Farinacci A (ed) Proceedings of the 2nd Planktonic Conference, Rome 1970, pp 99–105

  • Brokaw CJ, Luck DJL (1983) Bending patterns ofChlamydomonas reinhardtii flagella 1. Wild type bending patterns. Cell Motil 3: 31–150

    Google Scholar 

  • — —, Huang B (1982) Analysis of the movement ofChlamydomonas flagella: the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagella. J Cell Biol 92: 722–732

    Google Scholar 

  • Greuel BT, Floyd GL (1985) Development of the flagellar apparatus and flagellar orientation in the colonial green algaGonium pectorale (Volvocales). J Phycol 21: 358–371

    Google Scholar 

  • Holwill MEJ, Sleigh MA (1967) Propulsion by hispid flagella. J Exp Biol 47: 267–276

    Google Scholar 

  • Hoops HJ (1984) Somatic cell flagellar apparatuses in two species ofVolvox (Chlorophyceae). J Phycol 20: 20–27

    Google Scholar 

  • —, Floyd GL (1983) Ultrastructure and development of the flagellar apparatus and flagellar motion in the colonial green algaAstrephomene gubernaculifera. J Cell Sci 63: 21–41

    Google Scholar 

  • Hori H, Satow Y, Inouye I, Chihara M (1990) Origins of organelles and algae evolution deduced from 5S ribosomal RNA sequence. In: Nardon P, Gianinazzi-Pearson V, Grenier AM, Margulis L, Smith DC (eds) Endocytobiology, IV. INRA Press, Paris, pp 557–559

    Google Scholar 

  • Hyams JS, Borisy GG (1978) Isolated flagellar apparatus ofChlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci 33: 235–253

    Google Scholar 

  • Inouye I, Pienaar RN (1984) Light and electron microscope observations onNephroselmis astigmatica sp. nov. (class Prasinophyceae). Nord J Bot 4: 409–423

    Google Scholar 

  • —, Hori T, Chihara M (1990) Absolute configuration analysis of the flagellar apparatus ofPterosperma cristatum (Prasinophyceae) and consideration of its phylogenetic position. J Phycol 26: 329–344

    Google Scholar 

  • Kamiya R, Hasegawa E (1987) Intrinsic difference in beat frequency between the two flagella ofChlamydomonas reinhardtii. Exp Cell Res 173: 299–304

    Google Scholar 

  • Manton I (1975) Observations on the microanatomy ofScourfieldia marina Throndsen andScourfieldia caeca (Korsch.) Belcher et Swale. Arch Protistenk 117: 358–368

    Google Scholar 

  • —, Rayns DG, Ettl H, Parke M (1965) Further observations on green flagellates with scaly flagella: the genusHeteromastix Korshikov. J Mar Biol Assoc UK 45: 241–255

    Google Scholar 

  • Melkonian M (1982 a) Structural and evolutionary aspects of the flagellar apparatus in green algae and land plants. Taxon 3: 255–265

    Google Scholar 

  • — (1982 b) Effect of divalent cations on flagellar scales in the green flagellateTetraselmis cordiformis. Protoplasma 111: 221–233

    Google Scholar 

  • — (1983) Functional and phylogenetic aspects of the basal apparatus in algal cells. J Submicrosc Cytol 15: 121–125

    Google Scholar 

  • — (1984) Flagellar apparatus ultrastructure in relation to green algal classification. In: Irvine DEG, John DM (eds) Systematics of the green algae. Academic Press, ondon, pp 73–120

    Google Scholar 

  • — (1990 a) Phylum Chlorophyta class Prasinophyceae. In: Margulis L, Chapman DJ, Corliss J, Melkonian M (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 600–607

    Google Scholar 

  • — (1990 b) Chlorophyte orders of uncertain affinities. Order Pedinomonadales. In: Margulis L, Chapman DJ, Corliss J, Melkonian M (eds) Handbook of Protoctista. Jones and Bartlett, Boston, pp 649–651

    Google Scholar 

  • — Preisig HR (1982) Twist of central pair microtubules in the flagellum of the green flagellateScourfieldia caeca. Cell Biol Int Rep 6: 269–277

    Google Scholar 

  • — — (1986) A light and electron microscopic study ofScherffelia dubia, a new member of the scaly green flagellates (Prasinophyceae). Nord J Bot 6: 235–256

    Google Scholar 

  • — —, Robenek H (1984) The eyespot apparatus of flagellated green algae: a critical review. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol 3. Biopress, Bristol, pp 193–268

    Google Scholar 

  • Moestrup Ø (1978) On the phylogenetic validity of the flagellar apparatus in green algae and other chlorophyll a and b containing plants. Bio-Systems 10: 117–144

    Google Scholar 

  • — (1983) Further studies ofNephroselmis and its allies (Prasinophyceae). I. The question of the genusBipedinomonas. Nord J Bot 3: 609–627

    Google Scholar 

  • —, Ettl H (1979) A light and electron microscopical study ofNephroselmis olivacea Stein (Prasinophyceae). Opera Bot 49: 2–39

    Google Scholar 

  • —, Hori T (1989) Ultrastructure of the flagellar apparatus inPyramimonas octopus (Prasinophyceae). 2. Flagellar roots, connecting fibers, and numbering of individual flagella in green algae. Protoplasma 148: 41–56

    Google Scholar 

  • —, Throndsen J (1988) Light and electron microscopical studies onPseudoscourfieldia marina, a primitive scaly green flagellate (Prasinophyceae) with posterior flagella. Can J Bot 66: 1415–1434

    Google Scholar 

  • — (1980) Prasinophytes. In: Cox ER (ed) Phytoflagellates. Elsevier/North Holland, New York, pp 85–145

    Google Scholar 

  • O'Kelly CJ, Floyd GL (1984) Flagellar apparatus absolute orientations and the phylogeny of the green algae. Bio-Systems 16: 227–251

    Google Scholar 

  • Omoto CK, Brokaw CJ (1985) Bending patterns ofChlamydomonas flagella 2. Calcium effects of reactivatedChlamydomonas flagella. Cell Motil 5: 53–60

    Google Scholar 

  • Parke M (1966) The genusPachysphaera (Prasinophyceae). In: Barnes H (ed) Some contemporary studies in marine science. Allen and Unwin, London, pp 555–563

    Google Scholar 

  • —, Adams I (1961) ThePyramimonas-like motile stage ofHalosphaera viridis Schmitz. Bull Res Counc Israel 10: 94–100

    Google Scholar 

  • Pringsheim EG (1946) Pure culture of algae. Cambridge University Press, London

    Google Scholar 

  • Ringo DL (1967) Flagellar motion and fine structure of the flagellar apparatus inChlamydomonas. J Cell Biol 33: 543–571

    Google Scholar 

  • Rüffer U, Nultsch W (1985) High-speed cinematographic analysis of the movement ofChlamydomonas reinhardtii. Cell Motil 5: 251–263

    Google Scholar 

  • — — (1987) Comparison of the beating of cis and trans-f1agella ofChlamydomonas cells held on micropipettes. Cell Motil Cytoskeleton 7: 87–93

    Google Scholar 

  • Schmidt JA, Eckert R (1976) Calcium couples flagellar reversal to photostimulation inChlamydomonas. Nature 262: 713–715

    Google Scholar 

  • Sleigh MA (1964) Flagellar movement of the sessile flagellatesActinomonas, Codonosiga, Monas andPoteriodendron. Q J Microsc Sci 105: 405–414

    Google Scholar 

  • Sleigh MA (1981) Flagellar beat patterns and their possible evolution. Bio-Systems 14: 423–431

    Google Scholar 

  • —, Barlow DI (1982) How are different ciliary beat patterns produced? Symp Soc Exp Biol 35: 139–157

    Google Scholar 

  • Stewart KD, Mattox KR (1978) Structural evolution in the flagellated cells of green algae and land plants. Bio-Systems 10: 145–152

    Google Scholar 

  • — —, Chandler CD (1974) Mitosis and cytokinesis inPlatymonas subcordiformis, a scaly green monad. J Phycol 10: 65–79

    Google Scholar 

  • Tappan H (1980) The paleobiology of plant protists. WH Freeman, San Francisco

    Google Scholar 

  • Throndsen J (1969) Flagellates of Norwegian coastal waters. Nytt Mag Bot 16: 161–216

    Google Scholar 

  • Throndsen J (1988)Cymbomonas Schiller (Prasinophyceae) reinvestigated by light and electron microscopy. Arch Protistenk 136: 327–336

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inouye, I., Hori, T. High-speed video analysis of the flagellar beat and swimming patterns of algae: possible evolutionary trends in green algae. Protoplasma 164, 54–69 (1991). https://doi.org/10.1007/BF01320815

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01320815

Keywords

Navigation