Skip to main content
Log in

Some properties of calcium-activated adenosine triphosphatase from the hermatypic coralGalaxea fascicularis

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Samples of the hermatypic coralGalaxea fascicularis were collected between April 1987 and April 1990 from coral reefs off Singapore (103 °45′E; 1 °13′N). Ca2+-activated adenosine triphosphatase (ATPase) activity was detected in the plasma-membrane-enriched heavy microsomal fraction ofG. fascicularis. The high affinity component hadKm andVmax values of 0.0021 mM and 0.050 µmol Pi mg−1 protein min−1, respectively; corresponding values for the low affinity component were 0.15 mM and 0.85 µmol mg−1 protein min−1. The activity of the high affinity component was inhibited 80 and 50%, respectively, by the anticalmodulin drugs calmidazolium and chlorpromazine. The low affinity component of the Ca2+-ATPase may represent activities of alkaline phosphatase, Ca2+-ATPase from membranes of mitochondria and endoplasmic reticulum, or calmodulin-dissociated plasma membrane Ca2+-ATPase resulting from the removal of Ca2+ by EDTA during the isolation process. The high affinity Ca2+-ATPase is probably the enzyme responsible for Ca2+ extrusion from the cells ofG. fascicularis. The high and low affinity components of this Ca2+-ATPase could use ATP and ADP as substrates. Maximum activities of both components were registered at pH 7 and at 45°C. Ruthenium red, a specific inhibitor of Ca2+-ATPase, inhibited the activities of the high and low affinity Ca2+-ATPase by 100 and 60%, respectively. Inhibition of the activities of both components was also observed with sulphydryl reagents (PCMB and mersalyl). However, DCMU, diamox, dinitrophenol, iodoacetate, fluoride, cyanide, ouabain, oligomycin B and L-phenylalanine had no effect on the enzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bergmeyer, H. U., Gawehn, K., Grassl, M. (1974). Enzymes as biochemical reagents. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis. 1. Verlag Chemie GmbH, Weinheim, p. 425–522

    Google Scholar 

  • Carafoli, E. (1985). Biochemistry of plasma membrane calcium transporting systems. In: Martonosi, A. N. (ed.) The enzymes of biological membranes. Plenum Press, New York, p. 235–248

    Google Scholar 

  • Chalker, B. E. (1976). Calcium transport during skeletogenesis in hermatypic corals. Comp. Biochem. Physiol. 54A: 455–459

    Google Scholar 

  • Chalker, B. E. (1981). Skeletogenesis in scleractinian corals: the transport and deposition of strontium and calcium. In: Skoryna, S. C. (ed.) Handbook of stable strontium. Plenum Press, New York, p. 47–63

    Google Scholar 

  • Chalker, B. E., Taylor, D. L. (1975). Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coralAcropora cervicornis. Proc. R. Soc. B 190: 323–331

    Google Scholar 

  • Chapman, G. (1974). The skeletal system. In: Muscatine, L., Lenhoff, H. M. (ed.) Coelenterate biology: reviews and new perspectives. Academic Press, New York, p. 93–128

    Google Scholar 

  • Dunham, E. T., Glynn, I. M. (1961). Adenosinetriphosphatase activity and the active movements of alkali metal ions. J. Physiol., Lond. 156: 274–293

    Google Scholar 

  • Ghijsen, W. E. J. M., DeJong, M. D., Van Os, C. H. (1980). Dissociation between Ca2+-ATPase and alkaline phosphatase activities in plasma membranes of rat duodenum. Biochim. biophys. Acta 599: 538–551

    Google Scholar 

  • Gietzen, K., Bader, H. (1985). Effect of calmodulin antagonists on Ca2+-transport ATPase. In: Hidaka, H., Hartshorne, D. J. (ed.) Calmodulin antagonists and cellular physiology. Academic Press, New York, p. 347–362

    Google Scholar 

  • Gietzen, K., Wuthrich, A., Bader, H. (1981). R24571: a new powerful inhibitor of red blood cell Ca2+-ATPase and of calmodulin-regulated functions. Biochem. biophys. Res. Commun. 101: 418–425

    Google Scholar 

  • Goreau, T. F. (1956). Histochemistry of mucopolysaccharide-like substances and alkaline phosphatase in Madreporaria. Nature, Lond. 177: 1029–1030

    Google Scholar 

  • Goreau, T. F., Bowen, V. (1955). Calcium uptake by a coral. Science, N. Y. 122: 1188–1189

    Google Scholar 

  • Hasselbach, W., Seraydarian, K. (1966). The role of sulfhydryl groups in calcium transport through the sarcoplasmic membranes of skeletal muscle. Biochem. Z. 345: 159–172

    Google Scholar 

  • Hayes, R. L., Goreau, N. I. (1977). Cytodynamics of coral calcification. Proc. 3rd int. Symp. coral Reefs 1: [Taylor, D. L. (ed.) School of Marine and Atmospheric Sciences, University of Miami], p. 439–445

  • Isa, Y., Ikehara, N., Yamazato, K. (1980). Evidence for the occurrence of Ca2+-dependent adenosine triphosphatase in a hermatypic coral,Acropora hebes (DANA). Tech. Rep. Sesoko Mar. Sci. Lab. Univ. Ryakyus, Ryukyu Isl. 7: 19–25

    Google Scholar 

  • Itano, T., Penniston, J. T. (1985). Ca2+-pumping ATPase of plasma membranes. In: Hidaka, H., Hartshorne, D. J. (ed.) Calmodulin antagonists and cellular physiology. Academic Press, New York, p. 335–345

    Google Scholar 

  • Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls ‘a’, ‘b’, ‘c1’ and ‘c2’ in higher plants, algae, and natural phytoplankton. Biochem. Physiol. Pfl. 167: 191–194

    Google Scholar 

  • Jokiel, P. L., Coles, S. L. (1977). Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43: 201–208

    Google Scholar 

  • Krishnaveni, P., Chow, L. M., Ip, Y. K. (1989). Deposition of calcium (45Ca2+) in the coralGalexea fascicularis. Comp. Biochem. Physiol 94A: 509–513

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. biol. Chem. 193: 265–275

    Google Scholar 

  • Martin, J. B., Doty, D. M. (1949). Determination of inorganic phosphate-modification of isobutyl alcohol procedure. Analyt. Chem. 21: 965–967

    Google Scholar 

  • Morre, D. J. (1971). Isolation of golgi apparatus. In: Colowick, S. P., Kaplan, N. O. (ed.) Methods in enzymology. XXII. Academic Press, New York, p. 130–148

    Google Scholar 

  • Muscatine, J. D. (1971). Endosymbiosis of algae and coelenterates. In: Lenhoff, H. M., Muscatine, L., Davis, L. V. (ed.) Experimental coelenterate biology. University of Hawaii Press, Hawaii, p. 179–191

    Google Scholar 

  • Penefsky, H. S., Bruist, M. F. (1984). Adenosinetriphosphatases. In: Bergmeyer, H. U. (ed.) Methods of enzymatic analysis. Verlag Chemie, Weinheim, p. 324–335

    Google Scholar 

  • Pfleger, H., Wolf, H. U. (1975). Activation of membrane-bound high-affinity calcium ion-sensitive adenosine triphosphatase of human erythrocytes by bivalent metal ions. Biochem. J. 147: 359–361

    Google Scholar 

  • Reed, K. C., Bygrave, F. L. (1974). The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem. J. 140: 143–155

    Google Scholar 

  • Ronquist, G. (1975). Structurally bound adenosinetriphosphate phosphohydrolase of the animal cell. In: Christensen, H. N. (ed.) Biological transport. W. A. Benjamin Inc., Massachusetts, p. 272–297

    Google Scholar 

  • Rorive, G., Kleinzeller, A. (1974). Ca2+-activated ATPase from renal tubular cells. In: Fleischer, S., Packer, L. (ed.) Methods in enzymology. XXXII. Academic Press, New York, p. 303–306

    Google Scholar 

  • Sarkadi, B., Szasz, I., Gardos, G. (1980). Characteristics and regulation of active calcium transport in inside-out red cell membrane vesicles. Biochim. biophys. Acta 598: 326–338

    Google Scholar 

  • Scharff, O., Foder, B. (1978). Reversible shift between two states of Ca2+-ATPase in human erythrocytes mediated by Ca2+ and a membrane bound activator. Biochim. biophys. Acta 509: 67–77

    Google Scholar 

  • Schatzmann, H. J. (1973). Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J. Physiol., Lond. 253: 551–569

    Google Scholar 

  • Schatzmann, H. J., Vincenzi, F. F. (1969). Calcium movements across the membrane of human red cells. J. Physiol., Lond. 201: 369–395

    Google Scholar 

  • Shinn, E. A. (1966). Coral growth-rate, an environmental indicator. J. Paleont. 40: 233–240

    Google Scholar 

  • Vale, M. G. P., Moreno, A. J. M., Carvalho, A. P. (1984). Effects of calmodulin antagonists on the active Ca2+ uptake by rat liver mitochondria. Biochem. J. 214: 929–935

    Google Scholar 

  • Vandermeulen, J. H., Davis, N. D., Muscatine, L. (1972). The effects of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates. Mar. Biol. 16: 185–191

    Google Scholar 

  • Vandermeulen, J. H., Muscatine, L. (1974). Influence of symbiotic algae on calcification in reef corals: critique and progress report. In: Verberg, W. B. (ed.) Symbiosis in the sea. University of South Carolina Press, South Carolina, p. 1–20

    Google Scholar 

  • Vincenzi, F. F., Hinds, T. R. (1976). Plasma membrane calcium transport and membrane-bound enzymes. In: Cheung, W. Y. (ed.) Calcium and cell function, Vol. 1. Academic Press, London, p. 127–165

    Google Scholar 

  • Vinet, B., Zizian, L., Gauthier, B. (1978). Characteristics of the inhibition of serum alkaline phosphatase by theophylline. Clin. Biochem. 11(2): 57–61

    Google Scholar 

  • Watson, E. L., Vincenzi, F. F., Davis, P. W. (1971). Ca2+-activated membrane ATPase: selective inhibition by ruthenium red. Biochim. biophys. Acta 249: 606–610

    Google Scholar 

  • Wharton, D. C., Tzagoloff, A. (1967). Cytochrome oxidase from beef heart mitochondria. In: Colowick, S. P., Kaplan, N. O. (ed.) Methods in enzymology. X. Academic Press, New York, p. 245–250

    Google Scholar 

  • Wuytack, F., Raeymaekers, L., Verbist, J., Casteels, R. (1987) Ca2+-transport ATPases in the plasma membrane and endoplasmic reticulum. In: Anghileri, L. J. (ed.) The role of calcium in biological systems. IV. CRC Press Inc., Boca Raton, p. 115–162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Anraku, Suva

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ip, Y.K., Lim, A.L.L. & Lim, R.W.L. Some properties of calcium-activated adenosine triphosphatase from the hermatypic coralGalaxea fascicularis . Mar. Biol. 111, 191–197 (1991). https://doi.org/10.1007/BF01319700

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01319700

Keywords

Navigation