Skip to main content
Log in

Embryogeny ofPhaseolus coccineus: Growth and microanatomy

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

During early embryogeny, the development of the suspensor is rapid both in terms of size and fresh weight; structural differentiation can be observed as early as the proembryo stage with the formation of wall ingrowths. Ingrowths first appear in the outer wall of the suspensor cells adjacent to the integumentary tapetum, soon ingrowths begin to form in the inner suspensor cells as well. A basal-terminal gradation in nuclear size exists, with the largest nuclei in the basal suspensor cells. Cytologically, the suspensor cells appear to be very active, especially when the embryo reaches heart stage. Initially, the development of the embryo proper lags behind the suspensor, but its size and fresh weight increase rapidly as development proceeds. The volume of the liquid endosperm rises most rapidly during the late heart stage; and it is absorbed soon after. A cellular endospermic sheath surrounds the embryo, separating it from the liquid endosperm. Structural differentiation also occurs in the cellular endosperm cells with the formation of wall ingrowths in those cells that abut directly onto the integumentary tapetum. Both the suspensor and the cellular endosperm appear to remain active through the maturation of the seed. Storage bodies are formed in the cotyledons as well as in the embryonic axis. In the suspensor and the cellular endosperm, starch grains and lipid bodies can be found at the maturation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpi, A., F. Tognoni, andF. D'Amato, 1975: Growth regulator levels in embryo and suspensor ofPhaseolus coccineus at two stages of development. Planta127, 153–162.

    Google Scholar 

  • Brady, T., 1972: Cytological and biochemical studies on the suspensor and suspensor polytene chromosomes ofPhaseolus. New Haven, Connecticut: Thesis, Yale University.

    Google Scholar 

  • —, 1973: Feulgen cytophotometric determination of the DNA content of the embryo proper and suspensor cells ofPhaseolus coccineus. Cell Differentiation2, 65–75.

    Google Scholar 

  • Brown, M. M., 1917: The development of the embryo-sac and of the embryo inPhaseolus vulgaris. Bull. Torrey Bot. Club44, 535–544.

    Google Scholar 

  • Cionini, P. G., A. Bennici, A. Alpi, andF. D'Amato, 1976: Suspensor, gibberellin andin vitro development ofPhaseolus coccineus embryos. Planta131, 115–117.

    Google Scholar 

  • Clutter, M., T. Brady, V. Walbot, andI. Sussex, 1974: Macromolecular synthesis in diploid and polytene cells in bean embryos. J. Cell Biol.63, 1097–1102.

    Google Scholar 

  • —, andI. M. Sussex, 1968: Ultrastructural development of bean embryo cells containing polytene chromosomes. J. Cell Biol.39, 26 a.

    Google Scholar 

  • Cooper, D. C., 1938: Embryology ofPisum sativum. Bot. Gaz.100, 123–132.

    Google Scholar 

  • Corsi, G., 1972: The suspensor ofEruca sativa Miller (Cruciferae) during embryogenesisin vitro. G. Bot. Ital.106, 41–54.

    Google Scholar 

  • Eeuwens, C. J., andW. W. Schwabe, 1975: Seed and pod wall development inPisum sativum, L. in relation to extracted and applied hormones. J. exp. Bot.26, 1–14.

    Google Scholar 

  • Esau, K., 1965: Plant Anatomy. New York: J. Wiley.

    Google Scholar 

  • Feder, N., andT. P. O'Brien, 1968: Plant microtechnique: some principles and new methods. Amer. J. Bot.55, 123–144.

    Google Scholar 

  • Fisher, D. B., 1968: Protein staining of ribboned epon sections for light microscopy. Histochemie16, 92–96.

    Google Scholar 

  • Gillard, D. F., andD. C. Walton, 1976: Abscisic acid metabolism by a cell-free preparation fromEchinocystis lobata liquid endosperm. Plant Physiol.58, 790–795.

    Google Scholar 

  • Gunning, B. E. S., J. S. Pate, andL. G. Briarty, 1968: Specialized “Transfer Cells” in minor veins of leaves and their possible significance in phloem translocation. J. Cell Biol.37, C 7–12.

    Google Scholar 

  • — —, 1974: Transfer cells. In: Dynamic aspects of plant ultrastructure (Robards, A. W., ed.), pp. 441–480. Maidenhead: McGraw-Hill.

    Google Scholar 

  • Jensen, W. A., 1974: Reproduction in flowering plants. In: Dynamic aspects of plant ultra-structure (Robards, A. W., ed.), pp. 481–503. Maidenhead: McGraw-Hill.

    Google Scholar 

  • Lüttge, U., andE. Schnepf, 1976: Elimination processes by glands. Organic substances. In: Encyclopedia of plant physiology. New Series, II B (Lüttge, U., andM. G. Pitman, eds.), pp. 244–277. Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Maheshwari, P., 1950: An introduction to the embryology of angiosperms. New York: McGraw-Hill.

    Google Scholar 

  • Marinos, N. G., 1970: Embryogenesis of pea (Pisum sativum). I. The cytological environment of the developing embryo. Protoplasma70, 261–279.

    Google Scholar 

  • Mollenhauer, H. H., 1964: Plastic embedding mictures for use in electron microscopy. Stain Technol.39, 111–114.

    Google Scholar 

  • Nagl, W., 1974: ThePhaseolus suspensor and its polytene chromosomes. Z. Pflanzenphysiol.73, 1–44.

    Google Scholar 

  • Newcomb, W., 1973: The development of the embryo sac of sunflowerHelianthus annuus after fertilization. Canad. J. Bot.51, 879–890.

    Google Scholar 

  • —, andL. C. Fowke, 1974:Stellaria media embryogenesis: the development and ultrastructure of the suspensor. Canad. J. Bot.52, 607–614.

    Google Scholar 

  • Norstog, K., 1967: Studies on the survival of very small barley embryos in culture. Torrey Bot. Club Bull.94, 223–229.

    Google Scholar 

  • —, andR. M. Klein, 1972: Development of cultured barley embryos. II. Precocious germination and dormancy. Canad. J. Bot.50, 1887–1894.

    Google Scholar 

  • Pate, J. S., andB. E. S. Gunning, 1972: Transfer cells. Ann. Rev. Plant Physiol.23, 173–196.

    Google Scholar 

  • — —, andF. F. Milliken, 1970: Function of transfer cells in the nodal regions of stems, particularly in relation to the nutrition of young seedlings. Protoplasma71, 313–334.

    Google Scholar 

  • Ponzi, R., andP. Pizzolongo, 1972: The ultrastructure of suspensor cells ofIpomoea purpurea Roth. J. submic. Cytol.4, 199–204.

    Google Scholar 

  • Pool, C. R., 1973: Prestaining oxidation by acidified H2O2 for revealing Schiff-positive sites in epon-embedded sections. Stain Technol.48, 123–126.

    Google Scholar 

  • Rijven, A. H. G. C., 1952:In vitro studies on the embryo ofCapsella bursa-pastoris. Acta Bot. Neerl.1, 157–200.

    Google Scholar 

  • Ryczkowski, M., 1960: Changes of the osmotic value during the development of the ovule. Planta55, 343–356.

    Google Scholar 

  • —, 1974: Some physico-chemical factors in the ovule during embryogenesis. In: Fertilization in higher plants (Linskens, H. F., ed.), pp. 233–240. Amsterdam: North-Holland.

    Google Scholar 

  • Sachs, T., 1968: On the determination of the pattern of vascular tissue in peas. Ann. Bot.32, 781–790.

    Google Scholar 

  • Schnepf, E., andW. Nagl, 1970: Über einige Strukturbesonderheiten der Suspensorzellen vonPhaseolus vulgaris. Protoplasma69, 133–143.

    Google Scholar 

  • Schulz, P., andW. A. Jensen, 1969:Capsella embryogenesis: the suspensor and the basal cell. Protoplasma67, 139–163.

    Google Scholar 

  • Schwab, D. W., E. Simmons, andJ. Scala, 1969: Fine structure changes during function of the digestive gland of venus's-flytrap. Amer. J. Bot.56, 88–100.

    Google Scholar 

  • Simoncioli, C., 1974: Ultrastructural characteristics ofDiplotaxis erucoides (L.) DC. suspensor. G. Bot. Ital.108, 175–189.

    Google Scholar 

  • Smith, J. G., 1971: An analytical approach to the culture of globular bean embryos. Ph.D. Thesis. Univ. of Michigan. Ann Arbor, Mich.

    Google Scholar 

  • —, 1973: Embryo development inPhaseolus vulgaris. II. Analysis of selected inorganic ions, ammonia, organic acids, and sugar in the endosperm liquid. Plant Physiol.51, 454–458.

    Google Scholar 

  • Steeves, T. A., andI. M. Sussex, 1972: Patterns in plant development. New Jersey: Prentice-Hall.

    Google Scholar 

  • Sterling, C., 1955: Nucellus and endosperm in the seed of lima bean (Phaseolus lunatus L.). Torrey Bot. Club Bull.82, 39–49.

    Google Scholar 

  • Sussex, I., M. Clutter, V. Walbot, andT. Brady, 1973: Biosynthetic activity of the suspensor ofPhaseolus coccineus. Caryologia25 suppl., 261–272.

    Google Scholar 

  • Walbot, V., T. Brady, M. Clutter, andI. Sussex, 1972 a: Macromolecular synthesis during plant embryogeny: rates of RNA synthesis inPhaseolus coccineus embryos and suspensors. Develop. Biol.29, 104–111.

    Google Scholar 

  • —,M. Clutter, andI. M. Sussex, 1972 b: Reproductive development and embryogeny inPhaseolus. Phytomorp.22, 59–68.

    Google Scholar 

  • Wardlaw, C. W., 1965: Physiology of embryonic development in cormophytes. In: Encyclopedia of Plant physiology, XV/I (Ruhland, W., ed.), pp. 844–965). Berlin-Heidelberg-New York: Springer.

    Google Scholar 

  • Weinstein, A. I., 1926: Cytological studies onPhaseolus vulgaris. Amer. J. Bot.13, 248–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeung, E.C., Clutter, M.E. Embryogeny ofPhaseolus coccineus: Growth and microanatomy. Protoplasma 94, 19–40 (1978). https://doi.org/10.1007/BF01275532

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01275532

Keywords

Navigation