Skip to main content
Log in

Taxic evolutionary paleoecology and the ecological context of macroevolutionary change

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

A traditional focus of evolutionary paleoecology has been the reconstruction of the selective forces that have affected evolving lineages through time. If the history of those lineages is dominated by stasis and punctuation, however, this is at best an inadequate and at worst a misdirected research strategy for macroevolution, because long-term stasis implies that environmental factors may have less influence on evolving lineages than previously believed. Such reasoning has led some proponents of punctuated views to reject ecological interactions as predominant or even significant forces in evolution. This is not a necessary conclusion. It is possible to accept the empirical predominance of stasis in evolution and at the same time the importance of ecology in affecting the course of evolutionary trends within lineages. If stasis prevails, ecology matters in the evolution of lineages if either (1) stabilizing selection is an important cause of stasis or (2) ecological interactions play an important role in controlling the speciation process. Viewing allopatric speciation explicitly as a three-stage process (consisting of formation, persistence and differentiation of isolated populations) clarifies testing of the role of ecology in speciation and may redirect clade-specific evolutionary paleoecology towards more enlightening interaction with other areas of macroevolutionary study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allmon, W.D. (1988) Ecology of Recent turritelline gastropods (Prosobranchia, Turritellidae): current knowledge and paleontological implications.Palaios 3, 259–84.

    Article  Google Scholar 

  • Allmon, W.D. (1992a) A causal analysis of stages in allopatric speciation.Oxford Surv. Evol. Biol. 8, 219–57.

    Google Scholar 

  • Allmon, W.D. (1992b) Role of temperature and nutrients in extinction of turritelline gastropods: Cenozoic of the northwestern Atlantic and northeastern Pacific.Palaeogeog. Palaeoclimat. Palaeoecol. 92, 41–54.

    Article  Google Scholar 

  • Allmon, W.D. (1994a) Patterns and processes of heterochrony in lower Tertiary turritelline gastropods, U.S. Gulf and Atlantic coastal plains.J. Paleontol. (in press)

  • Allmon, W.D., (1994b) Systematics and evolution of Cenozoic American Turritellidae (Gastropoda) I. Paleocene and Eocene species from the U.S. Gulf and Atlantic coastal plains related toTurritella mortoni conrad andTurritella humerosa conrad.Palaeontographica Americana (in press).

  • Allmon, W.D., Carter, J.G., Kelley, P.H. and Schneider, J. (1991) Evolutionary dynamics of the Oligocene—Miocene molluscan radiation event in the Western Atlantic region.Geol. Soc. Am., Abst. w/Prog. 23(5, 163.

    Google Scholar 

  • Allmon, W.D., Erwin, D.H., Linsley, R.M. and Morris, P.J. (1992)Trophic Level and Evolution in Paleozoic Gastropods. Fifth North American Paleontological Convention. Abstracts and Program. The Paleontological Society, Spec. Publ. No. 6, p. 3 The Paleontological Society, Knoxville, Tennessee.

    Google Scholar 

  • Allmon, W.D., Rosenberg, G., Portell, R. and Schindler, K. (1993) Diversity of Pliocene to Recent Atlantic coastal plain mollusks.Science 260, 1626–8.

    Article  CAS  PubMed  Google Scholar 

  • Arthur, M.A., Zachos, J.C. and Jones, D.S. (1987) Primary productivity and the Cretaceous/Tertiary boundary event in the oceans.Cret. Res. 8, 43–5.

    Article  Google Scholar 

  • Ausich, W.I. (1992) Paleoecology workshop.Palaios 7, 239–40.

    Article  Google Scholar 

  • Boucot, A.J. (1981)Principles of Marine Benthic Paleoecology. Academic Press, New York.

    Google Scholar 

  • Boyd, R. (1985) Observations, explanatory power, and simplicity: toward a non-Humean account. InObservations, Experiment, and Hypothesis in Modern Physical Science (P. Achinstein and O. Hannaway, eds), pp. 47–94. MIT Press, Cambridge, MA.

    Google Scholar 

  • Brasier, M.D. (1991) Nutrient flux and the evolutionary explosion across the Precambrian—Cambrian boundary interval.Historical Biol. 5, 85–93.

    Article  Google Scholar 

  • Brasier, M.D. (1992) Nutrient-enriched waters and the early skeletal fossil record.J. Geol. Soc. London 149, 621–9.

    Article  CAS  Google Scholar 

  • Briggs, D.E.G. and Crowther, P.R. (eds) (1990)Palaeobiology. A Synthesis. Blackwell Scientific, Oxford.

    Google Scholar 

  • Brooks, D.R. (1985) Historical ecology: a new approach to studying the evolution of ecological associations.Ann. Mo. Bot. Gard. 72, 660–80.

    Article  Google Scholar 

  • Brooks, D.R. and McLennan, D.A. (1991)Phylogeny, Ecology, and Behavior. University of Chicago Press, Chicago.

    Google Scholar 

  • Carter, J.G. and Kelley, P.H. (1989) Biotic provinciality, nutrient levels, and the Miocene molluscan radiation event.Geol. Soc. Am., Abst. w/Prog. 21, A111.

    Google Scholar 

  • Charlesworth, B., Lande, R. and Slatkin, M. (1982) A Neo-Darwinian commentary on macroevolution.Evolution 36, 474–98.

    PubMed  Google Scholar 

  • Cheetham, A.H. (1986) Tempo of evolution in a Neogene bryozoan: rates of morphologic change within and across species boundaries.Paleobiology 12, 190–202.

    Article  Google Scholar 

  • Cockburn, A. (1991)An Introduction to Evolutionary Ecology. Blackwell Scientific, Oxford.

    Google Scholar 

  • Colwell, R.K. (1984) What's new? Community ecology discovers biology. InA New Ecology: Novel Approaches to Interactive Systems (P.W. Price, C.N. Slobodchikoff and W.S. Gaud, eds), pp. 387–96. Wiley, New York.

    Google Scholar 

  • Cope, J.C.W. and Skelton, P.W. (eds) (1985)Evolutionary Case Histories from the Fossil Record. Palaeontological Association Special Paper No. 33.

  • Diamond, J. and Case, T.J. (eds) (1986)Community Ecology. Harper and Row, New York.

    Google Scholar 

  • Dodd, J.R. and Stanton, R.J. (1991)Paleoecology. Concepts and Applications, 2nd edn. John Wiley and Sons, New York.

    Google Scholar 

  • Eldredge, N. (1977) Trilobites and evolutionary patterns. InPatterns of Evolution as Illustrated in the Fossil Record (A. Hallam, ed.), pp. 305–32. Elsevier, NY

    Chapter  Google Scholar 

  • Eldredge, N. (1979a) Alternative approaches to evolutionary theory.Bull. Carnegie Mus. Nat. History 13, 7–19.

    Google Scholar 

  • Eldredge, N. (1979b) Cladism and common sense. InPhylogenetic Analysis and Paleontology (J. Cracraft and N. Eldredge, eds), pp. 165–98. Columbia University Press, New York.

    Chapter  Google Scholar 

  • Eldredge, N. (1982) Phenomenological levels and evolutionary rates.System. Zool. 31, 338–47.

    Article  Google Scholar 

  • Eldredge, N. (1985)Unfinished Synthesis. Oxford University Press, New York.

    Google Scholar 

  • Eldredge, N. (1989)Macroevolutionary Dynamics: Species, Niches, and Adaptive Peaks. McGraw Hill, New York.

    Google Scholar 

  • Eldredge, N. (1991)The Miner's Canary: Unravelling the Mysteries of Extinction. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Fernandes, G.W. and Price, P.W. (1991) Comparisons of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. InPlant—Animal Interactions: Evolutionary ecology in Tropical and Temperate Regions (P.W. Price, T.M. Lewinsohn, G.W. Fernandes and W.W. Benson, eds), pp. 91–115. Wiley, New York.

    Google Scholar 

  • Fernandes, G.W. and Price, P.W. (1992) The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitats.Oecologia 90, 14–20.

    Article  PubMed  Google Scholar 

  • Fischer, A.G. and Arthur, M.A. (1977) Secular variations in the pelagic realm.Soc. Econ. Paleontol. Mineral. Spec. Publ. 25, 19–50.

    Google Scholar 

  • Foote, M. (1988) Survivorship analysis of Cambrian and Ordovician trilobites.Paleobiology 14, 258–71.

    Article  Google Scholar 

  • Foote, M. (1992) Detecting morphological selectivity in trilobite extinction: a comparison of taxonomic and morphological diversity patterns.Geol. Soc. Am. Abstracts w/Progr. 24, A45.

    Google Scholar 

  • Foote, M. (1993) Discordance and concordance between morphological and taxonomic diversity.Paleobiology,19, 85–204.

    Google Scholar 

  • Gilinsky, N.L. (1986) Species selection as a causal process.Evol. Biol. 20, 249–73.

    Google Scholar 

  • Glazier, D.S. (1987a) Toward a predictive theory of speciation: the ecology of isolate selection.J. Theor. Biol. 126, 323–33.

    Article  Google Scholar 

  • Glazier, D.S. (1987b) Energetics and taxonomic patterns of species diversity.System. Zool. 36, 62–71.

    Article  Google Scholar 

  • Gould, S.J. (1981) Palaeontology plus ecology as palaeobiology. InTheoretical Ecology (R.M. May, ed.), 2nd edn, pp. 295–317. Blackwell, New York.

    Google Scholar 

  • Gould, S.J. (1985) The paradox of the first tier: an agenda for paleobiology.Paleobiology 11, 2–12.

    Article  Google Scholar 

  • Gould, S.J. (1988a) Trends as changes in variance: a new slant on progress and directionality in evolution.J. Paleontol. 62, 319–29.

    Article  Google Scholar 

  • Gould, S.J. (1988b) On replacing the idea of progress with an operational notion of directionality. InEvolutionary Progress (M. Nitecki, ed.), pp. 319–38. University of Chicago Press, Chicago.

    Google Scholar 

  • Gould, S.J. (1989a) Punctuated equilibrium in fact and theory.J. Social Biol. Struct. 12, 117–36.

    Article  Google Scholar 

  • Gould, S.J. (1989b) A developmental constraint inCerion, with comments on the definition and interpretation of constraint in evolution.Evolution 43, 516–39.

    PubMed  Google Scholar 

  • Gould, S.J. (1990) Speciation and sorting as the source of evolutionary trends, or ‘Things are seldom what they seem’. InEvolutionary Trends (K. McNamara, ed.), pp. 3–27. Belhaven Press, London.

    Google Scholar 

  • Gould, S.J. and Lewontin, R.C. (1979) The Spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme.Proc. R. Soc. London 205B, 581–98.

    Google Scholar 

  • Hallock, P. (1987) Fluctuations in the trophic resource continuum: a factor in global diversity cycles?Paleoceanography 2, 457–71.

    Article  Google Scholar 

  • Hallock, P. and Schlager, W. (1986) Nutrient excess and the demise of coral reefs and carbonate platforms.Palaios 1, 389–98.

    Article  Google Scholar 

  • Harrington, H.J.et al. (1959) Classification. InTreatise on Invertebrate Paleontology Part O.Arthropoda (1). (R.C. Moore, ed.) Geological Soceity and University of Kansas Press.

  • Hickman, C.S. (1988) Analysis of form and function in fossils.Am. Zool. 28, 775–93.

    Article  Google Scholar 

  • Hill, A. (1981) Why study palaeoecology?Nature 293, 340.

    Article  Google Scholar 

  • Hoffman A. (1979) Community paleoecology as an epiphenomenal science.Paleobiology. 5, 357–79.

    Article  Google Scholar 

  • Imbrie, J. and Newell, N.D. (eds) (1964)Approaches to Paleoecology. Wiley, New York.

    Google Scholar 

  • Jablonski, D. (1989) The biology of mass extinction: a paleontological view.Phil. Trans. R. Soc. Lond. B 325, 357–68.

    Article  CAS  Google Scholar 

  • Jablonski, D. and Bottjer, D.J. (1990a) The origin and diversification of major groups: environmental patterns and macroevolutionary lags. InMajor Evolutionary Radiations (P.D. Taylor and G.P. Larwood, eds), pp. 17–57. Clarendon Press, Oxford.

    Google Scholar 

  • Jablonski, D. and Bottjer, D.J. (1990b) Onshore-offshore trends in marine invertebrate evolution. InCauses of Evolution: A Paleontological Perspective (R.M. Ross and W.D. Allmon, eds), pp. 21–75. University of Chicago Press, Chicago.

    Google Scholar 

  • Jablonski, D. and Bottjer, D.J. (1990c) The ecology of evolutionary innovation: the fossil record. InEvolutionary Innovations (M. Nitecki, ed.), pp. 253–88. University of Chicago Press, Chicago.

    Google Scholar 

  • Jackson, J.B.C. (1988) Does ecology matter?Paleobiology 14, 307–12.

    Article  Google Scholar 

  • Johnson, J.G. (1982) Occurrence of phyletic gradualism and punctuated equilibria through geologic time.J. Paleontol. 56, 1329–31.

    Google Scholar 

  • Jorgensen, C.B. (1966)Biology of Suspension Feeding. Pergamon Press, Oxford.

    Google Scholar 

  • Kaesler, R. (1982) Paleoecology and paleoenvironments.J. Geol. Ed. 30, 204–14.

    Google Scholar 

  • Kauffman, E.G. (1979) The ecology and biogeography of the Cretaceous—Tertiary extinction event. InCretaceous—Tertiary Boundary Events Symposium. II.Proceedings (W.K. Christensen and T. Birkelund, eds), pp. 29–37. University of Copenhagen, Copenhagen.

    Google Scholar 

  • Kelley, P.H. (1988) Predation by Miocene gastropods of the Chesapeake group: stereotyped and predictable.Palaios 3, 436–48.

    Article  Google Scholar 

  • Kitchell, J.A. (1985) Evolutionary paleoecology: recent contributions to evolutionary theory.Paleobiology 11, 91–104.

    Article  Google Scholar 

  • Kitchell, J.A. (1986) The evolution of predator-prey behavior: naticid gastropods and their molluscan prey. InEvolution of Animal Behavior: Paleontological and Field Approaches (M. Nitecki and J.A. Kitchell, eds), pp. 88–110. Oxford University Press, New York.

    Google Scholar 

  • Kitchell, J.A., Clark, D.L. and Gombos, A.M., Jr (1986) Biological selectivity of extinction: a link between background and mass extinction.Palaios 1, 504–11.

    Article  Google Scholar 

  • Levinton, J.S. (1974) Trophic group and evolution in bivalve molluscs.Palaeontology 17, 579–85.

    Google Scholar 

  • Lipps, J.H. and Mitchell, E. (1976) Trophic model for the adaptive radiations and extinctions of pelagic marine mammals.Paleobiology 2, 147–55.

    Article  Google Scholar 

  • Lipton, P. (1991)Inference to the Best Explanation. Routledge, New York.

    Book  Google Scholar 

  • Loehle, C. and Pechmann, J.H.K. (1988) Evolution: the missing ingredient in systems ecology.Am. Nat. 132, 884–99.

    Article  Google Scholar 

  • Magaritz, M. (1989)13C minima follow extinction events: a clue to faunal radiation.Geology 17, 337–40.

    Article  CAS  Google Scholar 

  • Matthew, W.D. (1926) The evolution of the horse. A record and its interpretation.Q. Rev. Biol. 1, 139–85.

    Article  Google Scholar 

  • Maynard Smith, J. (1984) Palaeontology at the high table.Nature 309, 401–2.

    Article  Google Scholar 

  • Maynard Smith, J. (1988) Punctuation in perspective.Nature 332, 311–12.

    Article  Google Scholar 

  • McFadden, B.J. (1987) Horses, the fossil record, and evolution.Evol. Biol. 22, 131–58.

    Google Scholar 

  • McKinney, M.L. and McNamara, K.J. (1991)Heterochrony. The Evolution of Ontogeny. Plenum Press, New York.

    Book  Google Scholar 

  • McKinney, M.L. and Allmon, W.D. (1994) Speciation, metapopulations and disturbance: from patch dynamics to biodiversity dynamics. InSpeciation and the Fossil Record. New Approaches (D.H. Erwin and R.L. Anstey, eds.) Columbia University Press, New York.

    Google Scholar 

  • McNamara, K.J. (1982) Heterochrony and phylogenetic trends.Paleobiology 8, 130–42.

    Article  Google Scholar 

  • Miller, W., III (ed.) (1990)Paleocommunity Temporal Dynamics the Long-term Development of Multispecies Assemblies. Paleontological Society, Special Publication No. 5. The Paleonological Society, Knoxville, Tennessee.

    Google Scholar 

  • Newton, C. and Laporte, L. (1989)Ancient Environments, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Novacek, M.J. and Wheeler, Q.D. (eds) (1992)Extinction and Phylogeny. Columbia University Press, New York.

    Google Scholar 

  • Paine, R.T. (1983) On paleoecology: an attempt to impose order on chaos.Paleobiology 9, 86–90.

    Article  Google Scholar 

  • Pianka, E.R. (1983)Evolutionary Ecology, 3rd edn. Harper and Row, New York.

    Google Scholar 

  • Pickett, S.T.A., Collins, S.L. and Armesto, J.J. (1987) Models, mechanisms and pathways of succession.Bot. Rev. 53, 335–71.

    Article  Google Scholar 

  • Reif, W.-E. (1983) Functional morphology and evolutionary ecology.Paläont. Z. 57, 255–66.

    Article  Google Scholar 

  • Ricklefs, R. (1987) Community diversity: relative roles of local and regional processes.Science 235, 167–71.

    Article  CAS  PubMed  Google Scholar 

  • Rollins, H.B. and Donahue, J. (1975) Towards a theoretical basis of paleoecology: concepts of community dynamics.Lethaia 8, 255–70.

    Article  Google Scholar 

  • Rollins, H.B., Carothers, M. and Donahue, J. (1979) Transgression, regression and fossil community succession.Lethaia 12, 89–104.

    Article  Google Scholar 

  • Rosenzweig, M.L. (1987) Editorial: evolutionary ecology.Evolutionary Ecology 1, 1–3.

    Article  Google Scholar 

  • Rosenzweig, M.L. and Abramsky, Z. (1994) How are diversity and productivity related? InHistorical and Geographical Determinants of Community Diversity (R. Ricklefs, and D. Schluter, eds), University of Chicago Press, Chicago. (In press).

    Google Scholar 

  • Roy, J.M., McMenamin, M.A.S. and Alderman, S.E. (1990) Trophic differences, originations and extinctions during the Cenomanian and Maastrichtian stages of the Cretaceous. InExtinction Events in Earth History (E.G. Kauffman and O.H. Walliser, eds), pp. 299–303. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Schindel, D.E. and Gould, S.J. (1977) Biological interaction between fossil species: character displacement in Bermudian land snails.Paleobiology 3, 259–69.

    Article  Google Scholar 

  • Scott, R.W. and West, R.R. (eds) (1976)Structure and Classification of Paleocommunities. Dowden, Hutchinson and Ross, Stroudsburg, PA.

    Google Scholar 

  • Sepkoski, J.J., Jr (1978) A kinetic model of Phanerozoic taxonomic diversity, I. Analysis of marine orders.Paleobiology 4, 223–52.

    Article  Google Scholar 

  • Sepkoski, J.J., Jr (1979) A kinetic model of Phanerozoic taxonomic diversity, II. Early Phanerozoic families and multiple equilibria.Paleobiology 5, 222–51.

    Article  Google Scholar 

  • Sepkoski, J.J., Jr (1981) A factor analytic description of the Phanerozoic marine fossil record.Paleobiology 7, 36–53.

    Article  Google Scholar 

  • Sepkoski, J.J., Jr (1984) A kinetic model of Phanerozoic taxonomic diversity, III. Post-Paleozoic families and mass extinctions.Paleobiology 10, 246–67.

    Article  Google Scholar 

  • Sepkoski, J.J., Jr and Sheehan, P.M. (1983) Diversification, faunal change, and community replacement during the Ordovician radiations. InBiotic Interactions in Recent and Fossil Benthic Communities (M.J.S. Tevesz and P.L. McCall, eds), pp. 673–717. Plenum, New York.

    Chapter  Google Scholar 

  • Sheehan, P.M. and Hansen, T.A. (1986) Detritus feeding as a buffer to extinction at the end of the Cretaceous.Geology 14, 868–70.

    Article  Google Scholar 

  • Shorrocks, B. (ed.) (1984)Evolutionary Ecology, 23rd Symposium, British Ecological Society, 1982. Blackwell Scientific, London.

    Google Scholar 

  • Signor, P.W. and Brett, C.E. (1984) The mid-Paleozoic precursor to the Mesozoic marine revolution.Paleobiology 10, 229–45.

    Article  Google Scholar 

  • Simpson, G.G. (1944)Tempo and Mode in Evolution. Columbia University Press, New York.

    Google Scholar 

  • Stanley, S.M. (1973) Effects of competition on rates of evolution, with special reference to bivalve mollusks and mammals.System. Zool. 22, 486–506.

    Article  Google Scholar 

  • Stanley, S.M. (1979)Macroevolution: Pattern and Process. W.H. Freeman, San Francisco.

    Google Scholar 

  • Stanley, S.M. (1986) Population size, extinction, and speciation: the fission effect in Neogene Bivalvia.Paleobiology 12, 89–110.

    Article  Google Scholar 

  • Stanley, S.M. (1990) The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages. InCauses of Evolution: A Paleontological Perspective (R.M. Ross and W.D. Allmon, eds), pp. 103–27. University of Chicago Press, Chicago.

    Google Scholar 

  • Stanley, S.M. and Yang, X. (1987) Approximate evolutionary stasis for bivalve morphology over millions of years: a multivariate, multilineage study.Paleobiology 13, 113–39.

    Article  Google Scholar 

  • Stanley, S.M., Van Valkenburgh, B. and Steneck, R.S. (1983) Coevolution and the fossil record. InCoevolution (D. Futuyma and M. Slatkin, eds), pp. 328–49. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Tappan, H. (1982) Extinction or survival; selectivity and causes of Phanerozoic crises. InGeological Implications of Impacts of Large Asteroids and Comets on the Earth (L.T. Silver and P.H. Schultz, eds), pp. 265–76. Geological Society of America Special Paper190 Geological Society of America, Boulder, Colorado.

    Chapter  Google Scholar 

  • Thayer, C.W. (1983) Sediment-mediated biological disturbance and the evolution of marine benthos. InBiotic Interactions in Recent and Fossil Benthic Communities (M.J.S. Tevesz and P.L. McCall, eds), pp. 480–625. Plenum, New York.

    Google Scholar 

  • Travis, J. and Mueller, L.D. (1988) Blending ecology and genetics: progress toward a unified population biology. InPerspectives in Ecological Theory (J. Roughgarden, R. May and S. Levin, eds), pp. 101–24. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Tucker, M.E. (1992) The Precambrian—Cambrian boundary: seawater chemistry, ocean circulation and nutrient supply in metazoan evolution, extinction and biomineralization.J. Geol. Soc. London 149, 655–68.

    Article  CAS  Google Scholar 

  • Valentine, J.W. (1973)Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Vermeij, G.J. (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers.Paleobiology 3, 245–58.

    Article  Google Scholar 

  • Vermeij, G.J. (1987a)Evolution and Escalation. Princeton University Press, Princeton, NJ.

    Book  Google Scholar 

  • Vermeij, G.J. (1987b) The dispersal barrier in the tropical Pacific: implications for molluscan speciation and extinction.Evolution 41, 1046–58.

    Article  PubMed  Google Scholar 

  • Vermeij, G.J. (1987c) Interoceanic differences in architecture and ecology: the effects of history and productivity. InComparisons between Atlantic and Pacific Tropical Marine Coastal Ecosystems: Community Structure, Ecological Processes and Productivity. Unesco Reports in Marine Science (C. Birkelund, ed.), pp. 105–25. Unesco, Paris.

    Google Scholar 

  • Vermeij, G.J. and Petuch, E.J. (1986) Differential extinction in tropical American molluscs: endemism,Malacologia 27, 29–41.

    Google Scholar 

  • Vrba, E. (1980) Evolution, species and fossils: how does life evolve?S.Afr.J.Sci. 76, 61–84.

    Google Scholar 

  • Vrba, E. (1983) Macroevolutionary trends: new perspectives on the roles of adaptation and incidental effect.Science 387–89.

  • Vrba, E. (1987) Ecology in relation to speciation rates: some case histories of Miocene—Recent mammal clades.Evol. Ecol. 1, 283–300.

    Article  Google Scholar 

  • Vrba, E. and Gould, S.J. (1986) The hierarchical expansion of sorting and selection: sorting and selection cannot be equated.Paleobiology 12, 217–28.

    Article  Google Scholar 

  • Wägele, J.W. (1989) On the influence of fishes on the evolution of benthic crustaceans.Z. zool. Syst. Evolut.-forsch.,29, 297–309.

    Google Scholar 

  • Walker, K.R. and Alberstadt, L.P. (1975) Ecological succession as an aspect of structure in fossil communities.Paleobiology 1, 238–57.

    Article  Google Scholar 

  • Williamson, P.G. (1981) Cinderella subject.Nature 296, 99–100.

    Article  Google Scholar 

  • Wilson, W.H. (1991) Competition and predation in marine soft sediment communities.Ann. Rev. Ecol. Syst. 21, 221–41.

    Article  Google Scholar 

  • Zachos, J.C., Arthur, M.A. and Dean, W.E. (1989) Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary.Nature 337, 61–4.

    Article  Google Scholar 

  • Ziegler, A.M., Walker, K.R., Anderson, E.J., Kauffman, E.G., Ginsburg, R.N. and James, N.P. (1973)Principles of Benthic Community Analysis. Notes for a Short Course. Sedimenta IV. Comparative Sedimentology Laboratory, University of Miami, Miami, Florida.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allmon, W.D. Taxic evolutionary paleoecology and the ecological context of macroevolutionary change. Evol Ecol 8, 95–112 (1994). https://doi.org/10.1007/BF01238244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01238244

Keywords

Navigation