Skip to main content
Log in

Characteristics of a copper bromide laser with flowing Ne-HBr buffer gas

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The operating characteristics of a small self-heated copper halide laser (λ=510.6 and 578.2 nm) are described, where the copper lasant atoms are produced by electric-discharge dissociation of copper bromide that is generatedin situ by flowing Ne-HBr gas mixture over copper pieces in the laser tube. The excitation technique permits fast startup (<1 min to laser oscillation from cold), and rapid and simple control of the CuBr vapour pressure, simultaneously introducing H2 to increase the efficiency. Specific laser output energies and average powers of 12μJ cm−3 and 195 mW cm−3, respectively, are almost a factor of 2 higher than those previously reported in the literature for multi-kilohertz copper bromide lasers. A maximum power of 7.8 W was obtained from the 40 cm3 active region. At its highest efficiency (0.8%) the laser produced 6.1 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. W. Karras,AGARD Conf. Proc. 300 (AGARD, Nevilly-sur-Seine, France, 1981) p. 29/1.

    Google Scholar 

  2. I. Smilanski, A. Kerman, L. A. Levin andG. Erez,Opt. Commun. 25 (1978) 79.

    Google Scholar 

  3. M. A. Kazaryan, G. G. Petrash andA. N. Trofimov,Soviet J. Quantum Electron. 10 (1980) 328.

    Google Scholar 

  4. D. N. Astadzhov, N. K. Buchkov, A. A. Isaev, G. G. Petrash, I. V. Ponomarev andN. V. Sabotinov,Soviet Phys. Lebedev Inst. Rep. 11 (1986) 90.

    Google Scholar 

  5. R. E. Grove,Laser Focus 18 (1982) 45.

    Google Scholar 

  6. R. R. Lewis,Opt. Quantum Electron. 23 (1991) S493.

    Google Scholar 

  7. D. M. Astadjov, N. K. Vuchkov andN. V. Sabotinov,IEEE J. Quantum Electron. QE-24 (1988) 1927.

    Google Scholar 

  8. D. W. Fieldman, C. S. Liu andI. Lieberman,Appl. Opt. 21 (1982) 2326.

    Google Scholar 

  9. D. N. Astadjov, N. V. Sabotinov andN. K. Vuchkov,Opt. Commun. 56 (1985) 279.

    Google Scholar 

  10. D. N. Astadzhov, N. K. Vuchkov, A. A. Isaev, G. G. Petrash, I. V. Ponomarev andN. V. Sabotinov,Soviet J. Quantum Electron. 17 (1987) 245.

    Google Scholar 

  11. N. K. Vuchkov, D. N. Astadjov andN. V. Sabotinov,Opt. Quantum Electron. 23 (1991) S549.

    Google Scholar 

  12. M. D. Ainsworth, D. J. W. Brown, D. W. Coutts andJ. A. Piper,ibid. 23 (1991) S539.

    Google Scholar 

  13. N. V. Sabotinov, N. K. Vuchkov andD. N. Astadjov, in ‘High-power Gas Lasers’,Proc. SPIE 1225 (SPIE, Bellington, 1990) p. 289.

    Google Scholar 

  14. E. S. Livingstone andA. Maitland,J. Phys. E: Scient. Instrum. 22 (1989) 63.

    Google Scholar 

  15. Idem, Sci. Meas. Technol. in press.

  16. S. Gabay, I. Smilanski, L. A. Levin andG. Erez,IEEE J. Quantum Electron. QE-13 (1977) 364.

    Google Scholar 

  17. D. N. Astadzhov, N. K. Vuchkov, G. G. Petrash andN. V. Sabotinov, in ‘Metal Vapor and Halide Lasers’, edited by G. G. Petrash,Proc. Lebedev Phys. Inst. 181 (Nova Science, Commack, 1989) p. 183.

    Google Scholar 

  18. C. J. Chen, A. M. Bhanji andG. R. Russell,Appl. Phys. Lett. 33 (1978) 146.

    Google Scholar 

  19. D. W. Feldman, C. S. Liu, J. L. Pack andL. A. Weaver,IEEE J. Quantum Electron. QE-13 (1987) 64D.

    Google Scholar 

  20. D. N. Astadjov, G. G. Petrash, N. V. Sabotinov andN. K. Vuchkov,Opt. Commun. 51 (1984) 85.

    Google Scholar 

  21. O. S. Akirtava, V. L. Dzhikiya andYu. M. Oelinik,Soviet J. Quantum Electron 5 (1976) 1001.

    Google Scholar 

  22. Z. Yuxing, L. Baogen andT. Xinli,Chinese Phys. Lasers 14 (1987) 862.

    Google Scholar 

  23. A. A. Vetter andN. M. Nerheim,Appl. Phys. Lett. 30 (1977) 405.

    Google Scholar 

  24. C. S. Liu, D. W. Feldman, J. L. Pack andL. A. Weaver,IEEE J. Quantum Electron. QE-13 (1977) 744.

    Google Scholar 

  25. D. N. Astadjov, PhD thesis, Sofia (1989).

  26. N. V. Subotinov, S. D. Kalchev andP. K. Telbizov,Soviet J. Quantum Electron. 5 (1976) 1003.

    Google Scholar 

  27. C. S. Liu, D. W. Feldman andL. A. Weaver, in Proceedings of the International Conference on Lasers 1979 (STS Press, McLean, Virginia, 1980) p. 335.

    Google Scholar 

  28. M. A. Kazaryan, G. G. Petrash andA. N. Trofimov, in ‘Metal Vapor and Halide Lasers’, edited by G. G. Petrash,Proc. Lebedev Phys. Inst. 181 (Nova Science, Commack, 1989) p. 78.

    Google Scholar 

  29. M. J. Kushner andF. E. C. Culick,J. Appl. Phys. 51 (1980) 3020.

    Google Scholar 

  30. D. R. Jones andC. E. Little,Opt. Quantum Electron. 24 (1992) 67.

    Google Scholar 

  31. Idem, IEEE J. Quantum Electron. in press.

  32. Idem, in III European and X National UK Quantum Electronics Conference, Heriot-Watt University, Edinburgh, 27–30 August 1991 (Technical Digest) p. 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livingstone, E.S., Jones, D.R., Maitland, A. et al. Characteristics of a copper bromide laser with flowing Ne-HBr buffer gas. Opt Quant Electron 24, 73–82 (1992). https://doi.org/10.1007/BF01234281

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01234281

Keywords

Navigation