Skip to main content
Log in

Sources of spontaneous slow waves associated with brain lesions, localized by using the MEG

  • Invited Papers
  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

Electric or magnetic slow wave brain activity can be associated with brain lesions. For an accurate source localization we transformed the magnetoencephalographic (MEG) coordinate system to the magnetic resonance imaging (MRI) system by using a surface fit of the digitally measured head surface and the reconstructed surface of the MRI scan. Furthermore we solved the problem to separate sources of focal activity from other multiple sources by introducing a spatial average, the Dipole Density Plot (DDP). The DDP shows in a quantified manner concentrations of dipoles across time. The DDP uses the single dipole model adequately, because only those signal sections will be analyzed, where one component contributes to the signal predominantly. In all cases, where multiple sources concurrently active are to be localized, a current distribution analysis will be used, the Current Localization by Spatial Filtering (CLSF). All source localization procedures were tested using structural brain lesions, which were verified by imaging techniques (MRI or CT), showing the results in close topographical relation to the lesions. The results so far let us assume, that the DDP and the CLSF are valuable tools to localize sources of focal spontaneous slow wave electrical brain activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham-Fuchs, K., Lindner, L., Wegener, P., Nestel, F. and Schneider, S. Fusion of Biomagnetism with MRI or CT images by contour-fitting. Biomed. Engineer. (Berlin), 1991, 36 (Suppl. 1): 88–89.

    Google Scholar 

  • Gallen, C., Schwartz, B., Pantev, C., Hampson, S., Sobel, D., Hirschkoff, E., Rieke, K, Otis, S. and Bloom, F. Detection and localization of delta frequency activity in human strokes. In: Hoke, M., Erne, S.N., Okada, Y.C. and Romani, G.L. (Eds.), Biomagnetism, Clinical Aspects. Exerpta Medica, Amsterdam, London, New York, Tokyo, 1992: 301–305.

    Google Scholar 

  • Grummich, P., Vieth, J. and Kober, H. Magnetic fields of the brain analyzed by a multiple dipole approach using factor analysis. Clinical Physics Physiol. Meas., 1991, 12 (Suppl. A): 61–66.

    Google Scholar 

  • Grummich, P., Vieth, J., Kober, H. and Schok, T. Separation of sources of alpha activity in multichannel MEG. In: Hoke, M., Erne, S.N., Okada, Y.C. and Romani, G.L. (Eds.), Biomagnetism, Clinical Aspects. Exerpta Medica, Amsterdam, London, New York, Tokyo, 1992: 39–42.

    Google Scholar 

  • Hämäläinen, M. Anatomical correlates for magnetoencephalography: integration with magnetic resonance images. Clin. Phys. Physiol. Meas., 1991, 12 (Suppl. A): 29–32.

    Google Scholar 

  • Iramina, K. and Ueno, S. Spatial properties of magnetic fields produced by radially oriented dipoles in inhomogenous sphere. In: Atsumi, K., Kotani, M., Ueno, S., Katila T. and Williamson, S.J. Biomagnetism '87. Tokyo Denki University Press, Tokyo, 1988: 106–109.

    Google Scholar 

  • Jung, R. Neurophysiologische Untersuchungsmethoden. II. Das Elektroencephalogramm (EEG). In: Handbuch der Inneren Medizin, 4th edition, Springer, Berlin, 1953: 1- 181.

    Google Scholar 

  • Kober, H., Grummich, P. and Vieth, J. Fit of the digitized head surface with the surface, reconstructed from MRI-Tomography. In: Baumgartner, C., Deeke, L., Stroink, G., Williamson, S.J. (Eds.), Biomagnetism: Fundamental Research and Clinical Applications. Elsvier Science, IOS Press, Amsterdam, Oxford U.K., Burke VA USA, Tokyo, 1995: 309–312.

    Google Scholar 

  • Kober, H., Vieth, J., Grummich, P., Daun, A., Weise, E. and Pongratz, H. The factor analysis used to improve the dipole-density-plot (DDP) to localize focal concentrations of spontaneous magnetic brain activity. Biomed. Engineer. (Berlin), 1992, 37 (Suppl. 2): 164–165.

    Google Scholar 

  • Mergenhagen, D., Creutzfeldt, O. and Neuweiler, G. Beziehungen zwischen Aktivitat kortikaler Neurone und EEG- Wellen im motorischen Kortex der Katze bei Hypoglykämie. Arch. Psychiat. Zeitschr. ges. Neurol., 1968, 211: 43–62.

    Google Scholar 

  • Nagata, K, Mizukami, M., Araki, G., Kawase, T. and Hirano, M. Topographic electroencephalographic study of cerebral infarction using computed mapping of the EEG (CME). J. Cereb. Blood Flow Metab., 1982, 2: 79–88.

    Google Scholar 

  • Nagata, K., Yunoh, K., Araki, G. and Mizukami, M. Topographic electroencephalographic study of transient ischemic attacks. Electroenceph. clin. Neurophysiol., 1984, 58: 291–301.

    Google Scholar 

  • Nagata, K., Gross, C.E., Kindt, G. W., Geyer, J.M. and Adey, G.R. Topographic electroencephalographic study with power ratio index mapping in patients with malignant brain tumors. Neurosurgery, 1985, 17: 613–619.

    Google Scholar 

  • Nagata, K., Tagawa, K., Hiroi, S., Nara, M., Shishido, F. and Uemura, K. Quantitative EEG and positron emission tomography in brain ischemia. In: G. Pfurtscheller and F.H. Lopes da Silva (Eds.), Functional Brain Imaging, Hans Huber Publishers, Toronto, Lewiston N.Y., Bern, Stuttgart, 1988: 239–250.

    Google Scholar 

  • Obrist, W.D., Sokolof, L., Lassen, N.A., Lane, M.H., Butler, R.N. and Feinberg, I. Relation of EEG to cerebral blood flow and metabolism in old age. Electroenceph. clin. Neurophysiol., 1963, 15: 610–619.

    Google Scholar 

  • Robinson, S.E., and Rose D.F. Current source image estimation by spatially filtered MEG. In:M. Hoke, S.N. Erne, Y.C. Okada, G.L. Romani (Eds.), Biomagnetism, Clinical Aspects, Exerpta Medica, Amsterdam, London, New York, Tokyo, 1992: 761–765.

    Google Scholar 

  • Sato, S. The localization of epileptiform activity: The NIH experience. In: Bachmann, K., Stefan, H., and Vieth, J. (Eds.), Biomagnetism: Principles, Models and Clinical Research. Palm and Enke, Erlangen, 1992: 44–47.

    Google Scholar 

  • Stefan, H., Schueler, P., Abraham-Fuchs, K. and Schneider, S. Ictal and interictal multichannel magnetic field recordings of epileptiform activity: Quantitative description of centers of focal epileptic activity. In Hoke, M., Erne, S.N., Okada, Y.C. and Romani, G.L. (Eds.), Biomagnetism, Clinical Aspects, Exerpta Medica, Amsterdam, London, New York, Tokyo, 1992: 87–91.

    Google Scholar 

  • Toole, J.F. Transient ischémic attacks. In: Toole, J.F. (Ed.), Cerebrovascular Disorders, Raven Press, New York, 1984: 101–116.

    Google Scholar 

  • Vieth, J. Magnetoencephalography in the study of stroke (cerebrovascular accidents). In: Sato, S. (Ed.), Advances in Neurology, Vol 54: Magnetoencephalography. Raven Press, New York, 1990: 261–269.

    Google Scholar 

  • Vieth, J. Comparison of single-channel and multi-channel MEG recordings. In: Maurer, K. (Ed.), Imaging of the Brain in Psychiatry and Related Fields. Springer, Berlin, Heidelberg, New York, 1993: 202–212.

    Google Scholar 

  • Vieth, J., Grummich, P., Sack, P., Kober, H., Schneider, S., Abraham-Fuchs, K., Kerber, U., Ganslandt, O. and Schmidt, T. Three dimensional localization of the pathological area in cerebrovascular accidents with multichannel magnetoencephalography. Biomed. Engineer. (Berlin), 1990, 35 (Suppl. 2): 238–239.

    Google Scholar 

  • Vieth, J., Kober, H., Weise, E., Daun, A., Moeger, A., Friedrich, S. and Pongratz, H. Functional 3-D localization of cere- brovascular accidents by magnetoencephalography (MEG). Neurol. Res. 1992a, 14 (Suppl.): 132–134.

    Google Scholar 

  • Vieth, J., Kober, H., Sack, G., Grummich, P., Friedrich, S., Moeger, A., Weise, E., Daun, A. and Pongratz, H. The efficacy of the discrete and the quantified continous dipole density plot (DDP) in multichannel MEG. In: M. Hoke, M., Erne, S.N., Okada, Y.C. and Romani, G.L. (Eds.), Biomagnetism, Clinical Aspects, Exerpta Medica, Amsterdam, London, New York, Tokyo, 1992b: 321–325.

    Google Scholar 

  • Vieth, J., Kober, H., Weise, E., Grummich, P., Pongratz, H., Fenwick, P.B.C. and Claus, D. Magnetic interictal epileptic brain activity localized by using the single and the two dipole model. Biomed. Engineer.(Berlin), 1992, 37 (Suppl. 2): 162–163.

    Google Scholar 

  • Vieth, J., Sack, G., Kober, H., Grummich, P., Friedrich, S., Moeger, A., Weise, E. and Pongratz, H.Magnetoencephalography, a method to localize silent transient ischémic attacks (TIA) using an improved dipole-density-plot. Biomed. Engineer.(Berlin), 1991, 36 (Suppl. 1): 155–156.

    Google Scholar 

  • Walter, W.G. The localization of cerebral tumors by electroencephalography. Lancet, 1936, 2: 305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was partly supported by the Deutsche Forschungsgemeinschaft (Vi 36/12-1), the AIM project of the European Community No. A2020, MAGNOBRAIN and by Siemens AG, Erlangen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieth, J.B., Kober, H. & Grummich, P. Sources of spontaneous slow waves associated with brain lesions, localized by using the MEG. Brain Topogr 8, 215–221 (1996). https://doi.org/10.1007/BF01184772

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01184772

Key words

Navigation