Skip to main content
Log in

Crystal chemistry of the NaZr2(PO4)3, NZP or CTP, structure family

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The NaZr2(PO4)3 type structure (abbreviated as NZP or CTP, CaTi4(PO4)6), has emerged as a new family, which has extraordinary technological utility in three fields: fast-ion conductors, radwaste solidification and zero expansion ceramics. NZP or CTP is formed by an extraordinary range of discrete compositions and crystalline solutions. In this paper these compositions are classified according to their crystal chemical substitution scheme, and some uncommon trends in the systematic variation of their lattice parameters are shown. Some of the major trends are explained by correlation with the rotation of polyhedra in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Hagman andP. Kierkegaard,Acta Chem. Scan. 22 (1966) 1822.

    Google Scholar 

  2. M. Sljukic, B. Matkovic, B. Prodic andD. Anderson,Z. Kristallographie 130 (1969) 148.

    Google Scholar 

  3. M. Sljukic, B. Matovic, P. Prodic andS. Scarnicar,Croat. Chem. Acta 39 (1967) 145.

    Google Scholar 

  4. B. Matovic, B. Prodic andM. Sljukic,Bull. Soc. Chim. Fr. (1968) 177.

  5. Rene Masse, A. Durif, J. C. Guitel andI. Tordjman,Bull. Soc. Fr. Min. Crist. 95 (1972) 47.

    Google Scholar 

  6. Rene Masse,ibid. 95 (1972) 405.

    Google Scholar 

  7. Rene Masse, J. C. Guitel andR. Perret,ibid. 96 (1973) 346.

    Google Scholar 

  8. Rene Perret, A. Thrierr-Sorel, J. P. Peter andR. Masse,ibid. 98 (1975) 103.

    Google Scholar 

  9. H. Y. Hong,Mater. Res. Bull. 11 (1976) 173.

    Google Scholar 

  10. J. B. Goodenough, H. Y. Hong andJ. A. Kafalas,ibid. 11 (1976) 203.

    Google Scholar 

  11. B. E. Taylor, A. D. English andT. Berzins,ibid. 12 (1977) 171.

    Google Scholar 

  12. C. Delmas, R. Olazcuaga, F. Cherkaoui, R. Brochu andG. Le Flem,C. R. Acad. Sci. Paris 287C (1978) 169.

    Google Scholar 

  13. M. Pintard-Screpel, F. D'Yvoire andF. Remy,ibid. 286C (1978) 381.

    Google Scholar 

  14. R. Brochu, F. Cherkaoui, C. Delmas, R. Olazcuaga andG. L. Flem,ibid. 298C (1978) 85.

    Google Scholar 

  15. A. La Ginestra, C. Ferragina andP. Patrono,Mater. Res. Bull. 14 (1979) 1099.

    Google Scholar 

  16. V. A. Efremov andV. B. Kalinin,Sov. Phys. Crystallogr. 23 (1978) 393.

    Google Scholar 

  17. H. Y. Hong, in “Proceedings of the International Conference on Fast Ion Transport in Solids”, 21 to 25 May 1979, Lake Geneva, edited by P. Vashishta, J. N. Mundy and G. K. Shenoy (Elsevier, North-Holland,) pp. 431–33.

  18. D. Tranqui, J. J. Capponi, J. C. Joubert, R. D. Shannon andC. K. Johnson,ibid., pp. 439–42.

  19. U. Von Alpen andM. F. Bell,ibid., pp. 443–46.

  20. G. R. Miller, B. J. McEntire, T. D. Hadnagy, J. R. Rasmussen, R. S. Gordon andA. V. Irkar,ibid., pp. 83-6.

  21. U. Von Alpen, M. F. Bell andW. Wichelhaus,Mater. Res. Bull. 14 (1979) 1317.

    Google Scholar 

  22. J. P. Boilot, J. P. Salanie, G. Desplanches andD. L. Potier,ibid. 14 (1979) 1469.

    Google Scholar 

  23. D. H. H. Quon, T. A. Wheat andW. Nesbitt,ibid. 15 (1980) 1533.

    Google Scholar 

  24. A. Clearfield, P. Jirustithipong, R. N. Cotman andS. P. Pack,ibid. 15 (1980) 1603.

    Google Scholar 

  25. M. Nagai, S. Fujitsu andT. Kanazawa,J. Amer. Ceram. Soc. 63 (1980) 476.

    Google Scholar 

  26. F. D'Yvoire, M. Pinterd-Screpel andE. Bretey,C.R. Acad. Sci. Paris 290C (1980) 185.

    Google Scholar 

  27. C. Delmas, J. C. Viala, R. Olazcuaga, G. Le Flem, P. Hagenmuller, F. Cherkaoui andR. Brochu,Mater. Res. Bull. 16 (1981) 83.

    Google Scholar 

  28. C. Delmas, R. Olazcuaga, G. Le Flem, P. Hagenmuller, F. Cherkaoui andR. Brochu,ibid. 16 (1981) 285.

    Google Scholar 

  29. A. Clearfield, L. P. Jerus andR. N. Cotman,Solid State Ionics 5 (1981) 301.

    Google Scholar 

  30. J. P. Boilot, G. Collin andR. Comes,ibid. 5 (1981) 307.

    Google Scholar 

  31. B. O. Hall,ibid. 5 (1981) 317.

    Google Scholar 

  32. Rustum Roy, E. R. Vance andJames Alamo,Mater. Res. Bull. 17 (1981) 585.

    Google Scholar 

  33. Rustum Roy, Liji Yang, James Alamo andE. R. Vance, in “Proceedings of Scientific Basis for Nuclear Waste Management VI”, edited by D. G. Brookins (Elsevier, New York, 1983) p.15.

    Google Scholar 

  34. James Alamo andRustum Roy,J. Amer. Ceram. Soc. 63 (1984) C78.

    Google Scholar 

  35. James Alamo andH. A. McKinstry, in preparation.

  36. Rustum Roy, D. K. Agrawal, James Alamo andR. A. Roy,Mater. Res. Bull. 19 (1984) 471.

    Google Scholar 

  37. R. D. Shannon andC. T. Prewitt,Acta Crystallogr. B25 (1969) 925.

    Google Scholar 

  38. Olaf Muller andRustum Roy, “The Major Ternary Structural Families” (Springer-Verlag, New York 1974) pp. 11–12.

    Google Scholar 

  39. A. I. Kryukova, I. A. Korshunov, E. P. Moskvichev, V. A. Mitrofanova, N. V. Vorb'eva, G. N. Kazantsev andO. V. Skiba,Russ. J. Inorg. Chem. 21 (1976) 1408.

    Google Scholar 

  40. James Alamo andRustum Roy,J. Amer. Ceram. Soc. 63 (1984) C80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alamo, J., Roy, R. Crystal chemistry of the NaZr2(PO4)3, NZP or CTP, structure family. J Mater Sci 21, 444–450 (1986). https://doi.org/10.1007/BF01145507

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01145507

Keywords

Navigation