Skip to main content
Log in

Neotropical ant gardens

I. Chemical constituents

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

In ant gardens of lowland Amazonia, parabiotic ant speciesCamponotus femoratus andCrematogaster cf.limata parabiotica cultivate a taxonomically diverse group of epiphytic plants, whose establishment is restricted to arboreal carton ant nests. Epiphyte seeds are collected by workers ofCa. femoratus, the larger of the two ants, and stored unharmed in brood chambers where they subsequently germinate. Although seeds of some ant-garden epiphytes bear nutritional rewards, previous studies have shown that these rewards are not sufficient to explain the pattern of ant attraction to seeds. Five aromatic compounds occur frequently in and on the seeds of most ant-garden epiphytes and may be chemical cues by which ants recognize propagules of their symbiotic plants. The most widely distributed of these is methyl 6-methylsalicylate [6-MMS]1, previously reported as a major mandibular gland product in relatedCamponotus species and present in trace quantities inCa. femoratus males. (−)-Citronellol6 (previously unreported inCamponotus) was the principal volatile constituent in extracts of male heads, and (−)-mellein7 was present in small quantities. Discovery of 6-MMS inside the mandibular glands of maleCa. femoratus (and its presence in analogous glands of related ants) offers preliminary support for Ule's (1906) hypothesis that seeds attract ants by mimicking ant brood. In addition, the likely fungistatic activity of seed compounds suggests that they could retard microbial pathogens of ants and plants in the organic detritus of nest gardens. While the presence of identical seed compounds in so many unrelated plant lineages might represent a remarkable case of convergent evolution, other interpretations are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa, H., Torimoto, N., andMasui, Y. 1969. Bestimmung der absoluten Konfiguration von Agimonolid und Mellein.Liebigs Ann. Chem. 728:152–157.

    Google Scholar 

  • Asahina, Y., andKondo, Y. 1922. 3-Hydroxy-o-toluic acid.J. Pharm. Soc. Jpn. 482:264–271.

    Google Scholar 

  • Attygalle, A.B., Siegel, B., Vostrowsky, O., Bestmann, H.J. andMaschwitz, U. 1989. Chemical composition and function of metapleural gland secretion of the ant,Crematogaster deformis Smith (Hymenoptera: Myrmicinae).J. Chem. Ecol. 15:317–328.

    Google Scholar 

  • Auwers, K., Lechner, M., andBundesmann, H. 1925. Zur Kenntnis der Beckmannschen Umlagerung (III.)Chem. Ber. 58:36–51.

    Google Scholar 

  • Biedermann, R., andPike, W.A. 1873. Ueber Kresotinsäure.Chem. Ber. 6:323.

    Google Scholar 

  • Birkinshaw, J.H., andBracken, A. 1942. Synthesis of compounds related to mould metabolic products. Part I. 3,5-Dihydroxy-2-formylbenzoic acid and 3,5-dihydroxyphthalic acid.J. Chem. Soc. 1942:368–370.

    Google Scholar 

  • Blum, M.S., Padovani, F., andAmante, E. 1968a. Alkanones and terpenes in the mandibular glands ofAtta species (Hymenoptera: Formicidae).Comp. Biochem. Phys. 26:291–299.

    Google Scholar 

  • Blum, M.S., Padovani, F., Herman, Jr., H.R. andKannowski, P.B. 1968b. Chemical releasers of social behavior. XI. Terpenes in the mandibular glands ofLasius umbratus.Ann. Entomol. Soc. Am. 61:1354–1359.

    Google Scholar 

  • Blum, M.S., Morel, L., andFales, H.M. 1987. Chemistry of the mandibular gland secretion of the antCamponotus vagus.Comp. Biochem. Phys. 866:251–252.

    Google Scholar 

  • Bowie, J.H., Ronayne, J., andWilliams, D.H.J. 1967. Solvent effects in nuclear magnetic resonance spectroscopy. Part X. Solvent shifts induced by benzene in ortho- and meta-substituted methoxybenzenes.J. Chem. Soc. (B) 1967:535–540.

    Google Scholar 

  • Brand, J.M., Duffield, R.M., MacConnell, J.G., Blum, M.S., andFales, H.M. 1973a. Caste-specific compounds in male carpenter ants.Science 179:388–389.

    Google Scholar 

  • Brand, J.M., Fales, H.M., Sokoloski, F.A., MacConnell, J.G., Blum, M.S., andDuffield, R.M. 1973b. Identification of mellein in the mandibular gland secretions of carpenter ants.Life Sci. 13:201–211.

    Google Scholar 

  • Carpenter, M.S., andEaster, W.M. 1955. The isopropyl cresols.J. Org. Chem. 20:401–411.

    Google Scholar 

  • Claisen, L., andEisleb, O. 1913. Über die Umlagerung von Phenolallyläthern in die isomeren Allylphenole.Liebigs Ann. Chem. 401:21–119.

    Google Scholar 

  • Clewer, H.W.B., Green, S.J., andTutin, F. 1915. The constituents ofGloriosa superba.J. Chem. Soc. 107:835–846.

    Google Scholar 

  • Cremer, S.E., andTarbell, D.S. 1961. The Fries reaction of 2,4-dichloro-5-methylphenyl acetate.J. Org. Chem. 26:3653–3657.

    Google Scholar 

  • Danishefsky, S., Prisbylla, M.P., andHiner, S. 1978. On the use oftrans-methyl-β-nitroacrylate in Diels-Adler reactions.J. Am. Chem. Soc. 100:2918–2920.

    Google Scholar 

  • Davidson, D.W. 1988. Ecological studies of Neotropical ant gardens.Ecology 69:1138–1152.

    Google Scholar 

  • Davidson, D.W., andEpstein, W.W. 1989. Epiphytic associations with ants. Chapter 8,in U Lüttge (ed.). Vascular Plants as Epiphytes. Springer-Verlag, New York. 200–233.

    Google Scholar 

  • Davies, W.H., andSexton, W.A. 1946. Chemical constitution and fungistatic action of organic sulphur compounds.Biochemistry 40:331–334.

    Google Scholar 

  • Dekiewiet, T.E., andStephen, H. 1931. 2-Hydroxy-4-methoxy- and 4-hydroxy-2-methoxy benzaldehydes.J. Chem. Soc. 1931:84–85.

    Google Scholar 

  • Eliel, E.L. 1951. The structure of the guaiacol “Mannich bases”.J. Am. Chem. Soc. 73:43–45.

    Google Scholar 

  • Eliel, E.L., Rivard, D.E., andBergstahler, A.W. 1953. The synthesis of 6-formylsalicylic acid, esters of 6-bromomethylsalicylic acid, and related substances.J. Org. Chem. 18:1679–1688.

    Google Scholar 

  • Elix, J.A., andFerguson, B.A. 1978. Synthesis of the lichen depsides, olivetoric acid, confluentic acid and 4-o-methylolivetoric acid.Aust. J. Chem. 31:1041–1051.

    Google Scholar 

  • Fujikawa, F., Sawaguchi, G., andTakimura, M. 1952. Antiseptics for foodstuff LIII.J. Pharm. Soc. Jpn. 72:1033–1036.

    Google Scholar 

  • Funke, A., andGombert, R. 1959. Synthesis of 2-methoxy-3-hydroxybenzaldehyde.Comp. Rend. 249:2084–2088.

    Google Scholar 

  • Gottig, C. 1876. Üeber zwei Äethyl-Derivate der Salicylsäure.Chem. Ber. 9:1473–1475.

    Google Scholar 

  • Greathouse, G.A., andRigler, N.B. 1940. The chemistry of resistance of plants to phymatotrichum root rot. IV. Toxicity of phenolic and related compounds.Am. J. Bot. 27:99–108.

    Google Scholar 

  • Hartshorn, M.P., andWallis, A.F.A. 1964. Some addition reactions of β-pinene derivatives.J. Chem. Soc. 1964:5254–5260.

    Google Scholar 

  • Hayakawa, M., Hayashi, M., andKamuro, Y. 1977. Japan Kokai 76,100,033.Chem. Abs. 86:38592h.

    Google Scholar 

  • Hölldobler, B., andEngel-Siegel, H., 1984. On the metapleural glands of ants.Psyche 91:201–224.

    Google Scholar 

  • Hölldobler, B., andMaschwitz, U. 1965. Der Hochzeitsschwarm der RossameiseCamponotus herculeanus L. (Hym. Formicidae).Z. Vergl. Physiol. 50:551–568.

    Google Scholar 

  • Jones, T.H., Blum, M.S., andFales, H.M. 1981. A facile synthesis of 2-hydroxy-6-methyl-acetophenone.Synth. Commun. 11:889–894.

    Google Scholar 

  • Julia, M., andChastrette, F. 1962. Sur quelques acides salicyliques portant en-4 une chaine acide aliphatique.Bull. Soc. Chim. Fr. 1962:2255–2261.

    Google Scholar 

  • Kistner, D.H. 1979. Social and evolutionary significance of social insect symbionts, pp. 340–413, in H.R. Hermann (ed.). Social Insects, Vol. 1. Academic Press, New York.

    Google Scholar 

  • Kleinfeldt, S. 1978. Ant-gardens: The interaction ofCodonanthe crassifolia (Gesneriaceae) andCrematogaster longispina (Formicidae).Ecology 59:449–456.

    Google Scholar 

  • Kleinfeldt, S. 1986. Ant-gardens: mutual exploitation, pp. 283–294, in B. Juniper and T.R.E. Southwood (eds.). Insects and the Plant Surface. Edward Arnold, London.

    Google Scholar 

  • Kurita, N., Miyaji, M., Kurane, R., andTakahara, Y. 1981. Antifungal activity of components of essential oils.Agric. Biol. Chem. 45:945–952.

    Google Scholar 

  • Law, J.H., Wilson, E.O., andMcCloskey, J.A. 1965. Biochemical polymorphism in ants.Science 149:544–546.

    Google Scholar 

  • Leifertova, F., Hejtmankova, N., Hlava, H., Kudrnacova, J., andSantavy, F. 1975. Antifungal and antibacterial effects of phenolic substances.Acta Univ. Palacki Olomuc., Fac. Med. 74:83–101.

    Google Scholar 

  • Madison, M. 1979. Additional observations on ant-gardens in Amazonas.Selbyana 5:107–115.

    Google Scholar 

  • Mali, R.S., Yadav, V.J., andZaware, R.N. 1982. An improved synthesis of naturally occurring coumarins: Synthesis of herniarin, scoparone and 7-methoxy-6-methylcoumarin.Indian J. Chem. 21B:759–760.

    Google Scholar 

  • Martens, J., andPraefuke, K. 1974. Photochemishe α-Spaltung von Thiobenzosaure-s-p-tolylestern in Lösung.Chem. Ber. 107:2319–2325.

    Google Scholar 

  • Maschwitz, U. 1974. Vergleichende Untersuchungen zur Funktion der Ameisenmetathorakaldruse.Oecologia 16:303–310.

    Google Scholar 

  • Mauthner, F. 1919. Die Synthese des Metadimethoxybenzaldehyds.J. Pracht. Chem. 100:176–182.

    Google Scholar 

  • Mauthner, F. 1927. Die Synthese eines neuen Resorcylaldehyds.J. Pracht. Chem. 116:314–320.

    Google Scholar 

  • Messer, A.C. 1985. Fresh dipterocarp resins gathered by megachilid bees inhibit growth of pollen-associated fungi.Biotropica 17:175–176.

    Google Scholar 

  • Patterson, E.L., Andreo, W.W., andBohonos, N. 1966. Isolation of the optical antipode of mellein from an unidentified fungus.Experientia 22:209–210.

    Google Scholar 

  • Payne, T.L., Slum, M.S., andDuffield, R.M. 1975. Chemoreceptor responses of all castes of a carpenter ant to male-derived pheromones.Ann. Entomol. Soc. Am. 68:385–386.

    Google Scholar 

  • Prance, G. 1973. Gesneriads in the ant gardens of the Amazon.Gloxian 23:27–28.

    Google Scholar 

  • Regnier, F.E., andWilson, E.O. 1968. The alarm-defence system of the antAcanthomyops claviger.J. Insect Physiol. 14:955–970.

    Google Scholar 

  • Rosenmund, K.W., andSchnurr, W. 1928. Über Acylwanderungen an Phenolin.Liebigs Ann. Chem. 460:56–98.

    Google Scholar 

  • Schamschurin, A.A. 1944. A new synthesis of γ-resorcylaldehyde.Z. Obsch. Chem. 14:211–215;Chem. Abs. 1945:2286.

    Google Scholar 

  • Schildkneckt, H., andKoob, K. 1970. Plant bioregulators in the metathoracic glands ofMyrmicine ants.Angew. Chem. Int. Engl. Ed. 9:173.

    Google Scholar 

  • Schildkneckt, H., andKoob, K. 1971. Myrmicacin, the first insect herbicide.Angew. Chem. Int. Engl. Ed. 10:124–125.

    Google Scholar 

  • Schmidt, H. 1944. Zur Raumisomerie in der Pinanreihe (IV. Mitteil.): Pinocarvon und die beiden diastereomeren Pinocarveole.Chem. Ber. 77:167–172.

    Google Scholar 

  • Sen, A.B., andJoshi, K.C. 1952. Search for organic fungicides: Chemical constitution and fungicidal activity.J. Sci. Food Agric. 3:526–531.

    Google Scholar 

  • Seidel, J.L. 1988. The monoterpenes ofGutierrezia sarothrae: Chemical interactions between ants and plants in neotropical ant-gardens. Dissertation. University of Utah, Salt Lake City, Utah.

    Google Scholar 

  • Spath, E., andKromp, K. 1941. Synthese des Pinosylvin-Monomethyläthers (V. Mitteil, über natürliche Stilbene).Chem. Ber. 74:1424–1428.

    Google Scholar 

  • Terborgh, J. 1983. The Behaviorial Ecology of Five New World Primates. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Tiemann, F., andMÜller, W.H.M. 1881. Ueber Abkömmlinge des Hydrochinons.Chem. Ber. 14:1985–1999.

    Google Scholar 

  • Ule, E. 1901. Ameisengarten im Amazonas-gebiet.Englers Bot. Jahrb. 30:45–51.

    Google Scholar 

  • Ule, E. 1905. Wechselbeziehungen zwischen Ameisen und Pflanzen.Flora 94:491–497.

    Google Scholar 

  • Ule, E. 1906. Ameisenpflanzen.Engler's Bot. Jahr. 37:235–352.

    Google Scholar 

  • Ulrich, H., Rao, D.V., Tucker, B., andSayigh, A.A.R. 1974. Selective demethylation of 2,5-dimethoxybenzaldehyde to 5-hydroxy-2-methoxybenzaldehyde.J. Org. Chem. 39:2437–2438.

    Google Scholar 

  • Wheeler, W.M. 1921. A new case of parabiosis and the “ant-gardens” of British Guiana.Ecology 2:89–103.

    Google Scholar 

  • Wheeler, W.M. 1942. Studies of neotropical ant-plants and their ants.Bull. Mus. Comp. Zool., Harvard 90:1–262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidel, J.L., Epstein, W.W. & Davidson, D.W. Neotropical ant gardens. J Chem Ecol 16, 1791–1816 (1990). https://doi.org/10.1007/BF01020495

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020495

Key words

Navigation