Skip to main content
Log in

Lattice gas generalization of the hard hexagon model. III.q-Trinomial coefficients

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the first two papers in this series we considered an extension of the hard hexagon model to a solvable two-dimensional lattice gas with at most two particles per pair of adjacent sites, and we described the local densities in terms of elliptic theta functions. Here we present the mathematical theory behind our derivation of the local densities. Our work centers onq-analogs of trinomial coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Baxter and G. E. Andrews,J. Stat. Phys. 44:249 (1986).

    Google Scholar 

  2. G. E. Andrews and R. J. Baxter,J. Stat. Phys 44:713 (1986).

    Google Scholar 

  3. B. Gordon,Am. J. Math. 83:393 (1961).

    Google Scholar 

  4. G. E. Andrews,The Theory of Partitions (Addison-Wesley, Reading, Massachusetts, 1976).

    Google Scholar 

  5. R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).

    Google Scholar 

  6. G. E. Andrews, R. J. Baxter, and P. J. Forrester,J. Stat. Phys. 35:193 (1984).

    Google Scholar 

  7. R. J. Baxter,J. Phys. A. 13:L61 (1980);J. Stat. Phys. 26:427 (1981).

    Google Scholar 

  8. A. Kuniba, Y. Akutsu, and M. Wadati,J. Phys. Soc. Japan 55:1092 (1986).

    Google Scholar 

  9. A. Kuniba, Y. Akutsu, and M. Wadati,Phys. Lett. A.116:382 (1986).

    Google Scholar 

  10. A. Kuniba, Y. Akutsu, and M. Wadati,Phys. Lett. A.117:358 (1986).

    Google Scholar 

  11. A. Kuniba, Y. Akutsu, and M. Wadati,J. Phys. Soc. Japan 55:2605 (1986).

    Google Scholar 

  12. E. Date, M. Jimbo, T. Miwa, and M. Okado,Lett. Math. Phys. 12 (1986).

  13. L. Comtet,Advanced Combinatorics (Reidel, Dordrecht, 1974).

    Google Scholar 

  14. W. N. Bailey,Generalized Hypergeometric Series (Cambridge, London, 1935; reprinted: Hafner, New York, 1964).

    Google Scholar 

  15. D. B. Sears,Proc. Lond. Math. Soc. (2) 53:158 (1951).

    Google Scholar 

  16. G. E. Andrews,Duke Math. J. 33:575 (1986).

    Google Scholar 

  17. L. J. Slater,Proc. Lond. Math. Soc. (2) 54:147 (1952).

    Google Scholar 

  18. G. E. Andrews, inEnumeration and Design (Academic, Toronto, 1984).

    Google Scholar 

  19. G. E. Andrews, R. J. Baxter, D. M. Bressoud, W. H. Burge, P. J. Forrester, and G. Viennot,Eur. J. Comb., to appear.

  20. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series andProducts (Academic, New York, 1965).

    Google Scholar 

  21. E. Date, M. Jimbo, A. Kuniba, T. Miwa, and M. Okado, Exactly solvable SOS models: Local height probabilities and theta function identities, preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrews, G.E., Baxter, R.J. Lattice gas generalization of the hard hexagon model. III.q-Trinomial coefficients. J Stat Phys 47, 297–330 (1987). https://doi.org/10.1007/BF01007513

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007513

Key words

Navigation