Skip to main content
Log in

Iron uptake by glial cells

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Dynamic studies of iron metabolism in brain are generally unavailable despite the fact that a number of neurologic conditions are associated with excessive accumulation of iron in central nervous tissue. Cortical non-neuronal (glial) cultures were prepared from fetal mouse brain. After 13 days the cultures were exposed to radiolabeled iron. Brisk and linear total iron uptake and ferritin iron uptake occurred over 4 hours. When methylamine or ammonium chloride was added, (both known inhibitors of transferrin iron release because of their lysosomotropic properties), total iron uptake was diminished. Further studies indicated that meth-ylamine inhibits glial cell ferritin iron incorporation. Glial cell iron transport is similar to previously reported neuronal cell iron transport (1) but glial cell iron uptake proceeds at a faster rate and is more susceptible to the inhibition of certain lysosomotropic agents. The data reinforces the likelihood that iron uptake by nervous tissues is transferrin-mediated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swaiman, K. F., andMachen, V. L. 1984. Iron uptake by mammalian cortical neurons. Ann. Neurol. 16:66–70.

    Article  PubMed  Google Scholar 

  2. Elejalde, B. R., Elejalde, M. M. J., andLopez, F. 1979. Hallervorden-Spatz disease. Clin. Genet. 16:1–16.

    PubMed  Google Scholar 

  3. Goldberg, W., andAllen, N. 1979. Nonspecific accumulation of metals in the globus pallidus in Hallervorden-Spatz disease. Trans. Am. Neurol. Assoc. 104:106–108.

    PubMed  Google Scholar 

  4. Swaiman, K. F., Smith, S. A., Trock, G. L., andSiddiqui, A. R. 1980. Sea-blue histiocytes, lymphocytic cytosomes and59Fe studies in Hallervorden-Spatz disease. (Abstract). Neurology 30:379.

    Google Scholar 

  5. Swaiman, K. F., Smith, S. A., Trock, G. L., andSiddiqui, A. R. 1983. Sea-blue histiocytes, lymphocytic cytosomes, and59Fe-studies in Hallervorden-Spatz syndrome. Neurology 33:301–305.

    PubMed  Google Scholar 

  6. Szanto, J., andGallyas, F. 1966. A study of iron metabolism in neuropsychiatric patients; Hallervorden-Spatz disease. Arch. Neurol. 14:438–442.

    PubMed  Google Scholar 

  7. Vakili, S., Drew, A. L., Von Schuchling, S., Becker, D., andZeman, W. 1977. Hallervorden-Spatz syndrome. Arch. Neurol. 34:729–738.

    PubMed  Google Scholar 

  8. Zimmerman, A. W., Karimeddini, M. K., Ramsby, G. R., andZimmer, A. E. 1981. Hallervorden-Spatz syndrome: Increased cerebral uptake of59Fe and demonstration of striatal iron deposits on CT scan. (Abstract). Neurology 31 (pt 2):129.

    Google Scholar 

  9. Earle, K. M. 1968. Studies on Parkinson's disease including x-ray fluorescent spectroscopy of formalin fixed brain tissue. J. Neuropath. Exp. Neurol. 27:1–14.

    PubMed  Google Scholar 

  10. Hallgren, B., andSourander, P. 1958. The effect of age on the non-haemin iron in the human brain. J. Neurochem. 3:47–51.

    Google Scholar 

  11. Lhermitte, J., Kraus, W. M., andMcAlpine, D. 1924. Etude des produits de desintegration et des depots du globus pallidus dans un cas de syndrome parkinsonien. Rev. Neurol. 1:356–361.

    Google Scholar 

  12. Rojas, G., Asenjo, A., Chiorino, R., Aranda, L., Rocamora, R., andDonoso, P. 1965. Cellular and subcellular structure of the ventrolateral nucleus of the thalamus in Parkinson disease. Deposits of iron. Confin. neuron. 26:362–376.

    Google Scholar 

  13. Goodman, L. 1953. A clinico-pathologic analysis of twenty-three cases with a thoery on pathogenesis. J. Nerv. & Ment. Dis. 118:97–130.

    Google Scholar 

  14. Akelaitis, A. J. 1944. Atrophy of basal ganglia in Pick's disease. Arch. Neurol. Psychiat. 51:27–34.

    Google Scholar 

  15. Ehmann, W. D., Alauddin, M., andHossain, T. I. M., Markesbery, W. R. 1984. Brain trace elements in Pick's disease. Ann. Neur. 15:102–104.

    Article  Google Scholar 

  16. Merritt, H. H., Adams, R. D., andSolomon, H. C. 1946. Neurosyphilis. Oxford, England. Oxford University Press.

    Google Scholar 

  17. Vitale, L., Opitz, J. M., andShahidi, N. T. 1969. Congenital and familial iron overload. 280:642–645.

  18. Olson, J. E., andHolzman, D. 1980. Respiration in rat cerebral astrocytes from primary culture. J. Neurosci. Res. 5:497–506.

    Article  PubMed  Google Scholar 

  19. Swaiman, K. F., Neale, E. A., Fitzgerald, S., andNelson, P. G. 1982. A method for large scale production of fetal mouse cerebral cortical cultures. Dev. Brain Res. 3:361–369.

    Article  Google Scholar 

  20. Sher, P. K., andMachen, V. L. 1984. Properties of3H-diazepam binding sites on cultured murine glial and neurones. Dev. Brain Res. 14:1–6.

    Article  Google Scholar 

  21. Nelson, C. V. 1964. Determination of serum iron using sulfonated diphenylphenanthroline. Am. J. Med. Technol. 30:71–80.

    PubMed  Google Scholar 

  22. Cox, P. G., Harvey, N. E., Sciortino, C., andByers, B. R. 1981. Electron-microscopic and radioiron studies of iron uptake in newborn rat myocardial cells in vitro. Am. Assoc. Path. 102:151–159.

    Google Scholar 

  23. Morgan, E. H. 1981. Inhibition of reticulocyte iron uptake by NH4Cl and CH3NH2. Biochim. et Biophys. Acta. 642:119–134.

    Google Scholar 

  24. Lowry, O. H., Rosebrough, N. F., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  25. Drysdale, J. W., andMunro, H. N. 1965. Small-scale isolation of ferritin for the assay of the incorporation of14C-labeled amino acids. Biochem. J. 95:851–858.

    PubMed  Google Scholar 

  26. Barden, H. 1969. The histochemical relationship of neuromelanin and lipofuscin. J. Neuropathol. Exp. Neurol. 28:419–441.

    PubMed  Google Scholar 

  27. Dfendini, R., Markesbery, W. R., Mastri, A. R., andDuffy, P. E. 1973. Hallervorden-Spatz disease and infantile neuroaxonal dystrophy. J. Neurol. Sci. 20:7–23.

    Article  PubMed  Google Scholar 

  28. Park, B. E., Netsky, M. G., andBetsill, W. L. 1975. Pathogenesis of pigment and spheroid formation in Hallervorden-Spatz syndrome and related disorders. Neurology 25:1172–1178.

    PubMed  Google Scholar 

  29. Wigboldus, J. M., andBruyn, G. W. 1968. Hallervorden-Spatz diseas. In: Vinken, P. J., and Bruyn, G. W. (eds.), Handbook of clinical neurology: diseases of the basal ganglia. Vol. 6 Amsterdam: North-Holland Publishing Co., 604–631.

    Google Scholar 

  30. Newman, R., Schneider, C., Sutherland, R., Vodinelich, L., andGreaves, M. 1982. The transferrin receptor. Trends. Biochem. Sci. 7:397–400.

    Article  Google Scholar 

  31. Octave, J-N., Schneider, Y-J., Trouet, A., andCrichton, R. R. 1983. Iron uptake and utilization by mammalian cells. I: Cellular uptake of tranferrin and iron. Trends Biochem. Sci. 8:217–220.

    Article  Google Scholar 

  32. Octave, J-N. Schneider, Y-J., Crichton, R. R., andTrouet, A. 1981. Transferrin uptake by cultured rat embryo fibroblasts. Eur. J. Biochem. 115:611–618.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaiman, K.F., Machen, V.L. Iron uptake by glial cells. Neurochem Res 10, 1635–1644 (1985). https://doi.org/10.1007/BF00988605

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00988605

Keywords

Navigation