Skip to main content
Log in

The solubility of iron sulphides in synthetic and natural waters at ambient temperature

  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

A critical evaluation of literature values for the solubility products, K NBSsp = [Fe2+][HS]γ Fe2+ γ HS (H +NBS )−1, of various iron sulphide phases results in consensus values for the pKs of 2.95 ± 0.1 for amorphous ferrous sulphide, 3.6 ± 0.2 for mackinawite, 4.4 ± 0.1 for greigite, 5.1 ± 0.1 for pyrrhotite, 5.25 ± 0.2 for troilite and 16.4 ± 1.2 for pyrite.

Where the analogous ion activity products have been measured in anoxic freshwaters in which there is evidence for the presence of solid phase FeS, the values lie within the range of 2.6–3.22, indicating that amorphous iron sulphide is the controlling phase. The single value for a groundwater of 2.65 (2.98 considering carbonate complexation) agrees. In seawater four values range between 3.85 to 4.2, indicating that mackinawite or greigite may be the controlling phase. The single low value of 2.94 is in a situation where particularly high fluxes of Fe (II) and S (−II) may result in the preferential precipitation of amorphous iron sulphide. Formation of framboidal pyrite in these sulphidic environments may occur in micro-niches and does not appear to influence bulk concentrations. Calculations show that the formation of Fe2S2 species probably accounts for very little of the iron or sulphide in most natural waters. Previously reported stability constants for the formation of Fe (HS)2 and (Fe (HS)3) are shown to be suspect, and these species are also thought to be negligible in natural waters. In completely anoxic pore waters polysulphides also have a negligible effect on speciation, but in tidal sediments they may reach appreciable concentrations and lead to the direct formation of pyrite. Concentrations of iron and sulphide in pore waters can be controlled by the more soluble iron sulphide phase. The change in the IAP with depth within the sediment may reflect ageing of the solid phase or a greater flux of Fe (II) and S (−II) nearer the sediment surface. This possible kinetic influence on the value of IAPs has implications for their use in geochemical studies involving phase formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, R. C., 1980. Diagenetic processes near the sediment-water interface of Long Island Sound. II. Fe and Mn. In B. Saltzmann (Editor), Estuarine physics and chemistry: studies in Long Island Sound, Adv. in Geophysics, V22, Acad. Press., New York.

    Google Scholar 

  • Bard, A. J., R. Parson, and J. Jordon, 1985. Standard Potentials in Aqueous Solution, Marcell Dekker, New York, 834 pp.

    Google Scholar 

  • Berner, R. A., 1964. Iron sulphides formed from aqueous solutions at low temperatures and pressures. J. Geol. 72:293–206.

    Google Scholar 

  • Berner, R. A., 1967. Thermodynamic stability of sedimentary iron sulphides. Am. J. Sci., 265:773–785.

    Google Scholar 

  • Berner, R. A., 1971. Principles of Chemical Sedimentology. McGraw-Hill, New York, 240 pp.

    Google Scholar 

  • Betzer, P. R., 1971. The concentration and distribution of particulate iron in waters of the Northwestern Atlantic Ocean and Caribbean Sea. Ph. D. Thesis, University of Rhode Island, Kingston.

    Google Scholar 

  • Boulegue, J., 1977. Equilibria in a sulphide rich water from Enghien-les-Bains, France. Geochim. Cosmochim. Acta 41:1751–1758.

    Google Scholar 

  • Boulegue, J. and G. Michard, 1979. Sulphur speciations and redox processes in reducing environments. In: E. A. Jenne (Editor), Chemical modelling in aqueous systems. Am. Chem. Soc., Washington, D. C., pp 25–50.

    Google Scholar 

  • Boulegue, J., C. J. Lord, and T. M. Church, 1982. Sulphur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware. Geochim. Cosmochim. Acta 46:543–464.

    Google Scholar 

  • Bruner, L. and I. Zawadski, 1910. Über die Gleichgewichte bei der Schwefelwasserstoffallung der Metalle. 65:136–151.

    Google Scholar 

  • Buffle, J., 1988. Complexation reactions in aquatic systems — an analytical approach. Ellis Horwood, Chichester, 692 pp.

    Google Scholar 

  • Buffle, J., R. R. Devitre, D. Perret, and G. G. Leppard, 1988. Combining field measurements for speciation in non perturbable water samples. In: J. A. Kramer and H. E. Allen (Editors), Metal Speciation: Theory, Analysis and Application, Lewis, Michigan.

    Google Scholar 

  • Burn, M. C., 1987. Procedures for improving the precision of pH measurements in freshwaters. Ph. D. Thesis, University of Newcastle-upon-Tyne.

  • Cook, R. B., 1984. Distributions of ferrous iron and sulphide in an anoxic hypolimnion. Can. J. Fish. Aquat. Sci. 41:286–293.

    Google Scholar 

  • Covington, A. K., R. G. Bates, and R. A. Durst, 1985. Definition of pH scales, standard reference values, measurement of pH and related terminology. Pure Appl. Chem. 57:531.

    Google Scholar 

  • Culberson, C. H., 1981. Direct Potentiometry. In: M. Whitfield and D. Jagner (Editors), Marine Electrochemistry. Wiley, Chichester, pp 187–261.

    Google Scholar 

  • Davison, W., 1977. The polarographic measurement of O2, Fe2+, Mn2+ and S2- in hypolimnetic water. Limnol. Oceanogr. 22:746–753.

    Google Scholar 

  • Davison, W. and S. I. Heaney, 1978. Ferrous iron sulphide interactions in anoxic hypolimnetic waters. Limnol. Oceanogr. 23:1194–1200.

    Google Scholar 

  • Davison, W., 1979. Soluble inorganic ferrous complexes in natural waters. Geochim. Cosmochim. Acta 43:1693–1696.

    Google Scholar 

  • Davison, W., 1980. A critical comparison of the measured solubilities of ferrous sulphide in natural waters. Geochim. Cosmochim. Acta44:803–808.

    Google Scholar 

  • Davison, W. and S. I. Heaney, 1980. Determination of the solubility of ferrous sulphide in a seasonally anoxic marine basin. Limnol. Oceanogr. 25:153–156.

    Google Scholar 

  • Davison, W. and B. J. Finley, 1986. Ferrous iron and phototrophy as alternative sinks for sulphide in the anoxic hypolimnia of two adjacent lakes. J. Ecol. 74:663–673.

    Google Scholar 

  • Davison, W. and T. R. Harbinson, 1988. Performance testing of pH electrodes suitable for low ionic strength solutions. Analyst 113:709–713.

    Google Scholar 

  • De Vitre, R. R., 1986. Multimethod characterization of the forms of iron, manganese, and sulphur in an eutrophic lake (Bret, Vaud, Switzerland). Ph. D. dissertation, Univ. of Geneva, Switzerland.

    Google Scholar 

  • Desborough, G. A. and R. H. Carpenter, 1965. Phase relations of pyrrhotite. Econ. Geol. 60:1431–1450.

    Google Scholar 

  • Douabul, A. A. and J. P. Riley, 1979. The solubility of gases in distilled water and seawater, V. hydrogen sulphide. Deep-Sea Res. 26A:259–268.

    Google Scholar 

  • Duchat, P., S. Calvert, and N. Price, 1973. Distribution of trace metals in the pore waters of shallow marine sediments. Limnol. Oceanogr. 18:605–610.

    Google Scholar 

  • Dyrssen, D. and R. Hallberg, 1979. Anoxic sediment reactions — a comparison between box experiments and a Fjord investigation. Chem. Geol. 24:151–159.

    Google Scholar 

  • Dyrssen, D., 1985. Metal complex formation in sulphidic seawater. Mar. Chem. 15:285–293.

    Google Scholar 

  • Dyrssen, D., 1988. Sulfide complexation in surface seawater. Mar. Chem. 24:143–153.

    Google Scholar 

  • Emerson, S., 1976. Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters. Geochim. Cosmochim. Acta 40:925–934.

    Google Scholar 

  • Emerson, S., R. E. Cranston, and P. S. Liss, 1979. Redox species in a reducing fjord: equilibrium and kinetic considerations. Deep-Sea Res. 26A:859–878.

    Google Scholar 

  • Emerson, S., L. Jacobs, and B. Tebo, 1983. The behaviour of trace metals in marine anoxic waters: solubilities at the oxygen-hydrogen sulphide interface. In: C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton and E. D. Goldberg (Editors), Trace Metals in Seawater. Plenum, New York, N. Y., pp 579–608.

    Google Scholar 

  • Fonselius, S. H., 1969. Hydrography of the Baltic deep basins 111. Fish Board Swed. Ser.

  • Foreman, F., 1929. Hydrothermal experiments on solubility, hydrolysis and oxidation of iron and copper sulphides. Econ. Geol. 24:811–837.

    Google Scholar 

  • Gamsjaeger, H., F. Reiterer, and R. Heindl, 1982. Solubility constants and free enthalpies of metal sulphides and carbonates. Ber. Bunsenges Phys. Chem. 86:1046–1049.

    Google Scholar 

  • Garrels, R. M. and C. L. Christ, 1965. Solutions, Minerals and equilibria, Harper and Row, New York.

    Google Scholar 

  • Giblin, A. E. and R. W. Howarth, 1984. Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. Limnol. Oceanogr. 29:47–63.

    Google Scholar 

  • Goldhaber, M. B. and I. R. Kaplan, 1975. Apparent dissociation constants of hydrogen sulphide in chloride solutions. Mar. Chem. 3:83–104.

    Google Scholar 

  • Hamilton-Taylor, J. and N. B. Price, 1983. The geochemistry of iron and manganese in the waters and sediments of Bolstadfjord, S. W. Norway. Est. Coast. Shelf. Sci. 17:1–19.

    Google Scholar 

  • Heindl, R. and H. Gamsjaeger, 1977. Solubility constants and free enthalpies of metal sulphides, Part 6: A new solubility cell. Monatsch. Chemie. 108:1356–1369.

    Google Scholar 

  • Hoshika, A., O. Takimura, and T. Shiozawa, 1978. Vertical distribution of particulate manganese and iron in Beppu Bay. J. Oceanogr. Soc. Japan 34:261–264.

    Google Scholar 

  • Howarth, R. W. and B. B. Jorgensen, 1984. Formation of 35S-labelled elemental sulphur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35SO 4/2- reduction measurements. Geochim. Cosmochim. Acta 48:1807–1818.

    Google Scholar 

  • Jacobs, L. and S. Emerson, 1982. Trace metal solubility in an anoxic fjord. Earth Planet. Sci. Lett. 60:237–252.

    Google Scholar 

  • Jacobs, L., S. Emerson, and J. Skei, 1985. Partitioning and transport of metals across the O2/H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway. Geochim. Cosmochim. Acta 49:1433–1444.

    Google Scholar 

  • Kawashima, M., H. Hara, O. Itsaka, T. Hori, T. Takamatsu, and M. Koyama, 1983. Chemical changes in Lake Biwa. Mem. Foc. Ed. Shiga Univ. 33:67–101.

    Google Scholar 

  • Kawashima, M., T. Hori, M. Koyama, and T. Takamatsu, 1985. Redox cycle of manganese and iron and the circulation of phosphorus in a dredged area of the southern lake. Kukuritsu Kugai Kenkyusho Kenkt Hokoku 75:47–62.

    Google Scholar 

  • Khodakovskii, I. P., 1966. On the hydrosulphide form of heavy metal transportation in hydrothermal solutions. Geokhimiya 7:960–971.

    Google Scholar 

  • King, R. D. and P. A. Tyler, 1982. Lake Fidler, a meromictic lake in Tasmania. Arch. Hydrobiol. 93:393–422.

    Google Scholar 

  • Kjensmo, J., 1967. The development and some main feature of “iron-meromictic” soft water lakes. Arch. Hydrobiol. Suppl. 32:137–312.

    Google Scholar 

  • Kolthoff, I.M. and F.S. Griffith, 1938. Studies on ageing and properties of precipitates. XXIII. The postprecipitation of ferrous sulphide with cupric sulphide. J. Am. Chem. Soc. 60:2036–2039.

    Google Scholar 

  • Koroleff, F., 1968. A note on the iron content of Baltic waters. ICES. C. M., C 34.

  • Kremling, K., 1983. The behaviour of Zn, Cd, Cu, Ni, Co, Fe, and Mn in anoxic Baltic waters. Mar. Chem. 13:87–108.

    Google Scholar 

  • Lahann, R. W., 1976. Molybdenum transport mechanisms in fresh-water environments. Ph. D. Thesis, University of Illinois.

  • Lahann, R. W., 1977. Molybdenum and iron behaviour in oxic and anoxic lake water. Chem. Geol. 20:315–323.

    Google Scholar 

  • Leventhal, S. S., 1983. An interpretation of carbon and sulphur relationships in Black Sea sediments as indicators of environments of deposition. Geochim. Cosmochim. Acta 47:133–137.

    Google Scholar 

  • Licht, S. and J. Manassen, 1987. The second dissociation constant of H2S. J. Electrochem. Soc. 134:918–921.

    Google Scholar 

  • Licht, S., 1988. Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulphides. J. Electrochem. Soc. 135:2971–2975.

    Google Scholar 

  • Liden, J., 1983. Equilibrium approaches to natural water systems — Part 3: a study of equilibrium reactions of Fe2+ during its diffusional transport through the anoxic hypolimnion of an icecovered lake. Schweiz. Z. Hydrol. 45:411–429.

    Google Scholar 

  • Liotta, F. P., 1979. Dissolved oxygen demand for reduced chemical species in the water column of Sebasticook Lake, Maine. NTIS Report W79-04684, 55 pp.

  • Luther, G. W., A. Giblin, A. W. Howarth, and R. A. Ryans, 1982. Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochim. Cosmochim. Acta 46:2665–2669.

    Google Scholar 

  • Luther, G. W., A. E. Giblin, and R. Varsolonu, 1985. Polarographic analysis of sulphur species in marine porewaters. Limnol. Oceanogr. 30:727–736.

    Google Scholar 

  • Morse, J. W. and J. C. Cornwell, 1987. Analysis and distribution of iron sulphide minerals in recent anoxic marine sediments. Mar. Chem. 22:55–69.

    Google Scholar 

  • Morse, J. W., F. J. Millero, J. C. Cornwell, and D. Rickard, 1987. The chemistry of the hydrogen sulphide and iron sulphide systems in natural waters. Earth-Sci. Rev. 24:1–42.

    Google Scholar 

  • Moser, L. and M. Behr, 1924. Die Bestimmung der Metalle der Schwefelammengruppe durch Schwefelwasserstoff unter Druck. Z. anorg. Allgem. Chem. 134:49–74.

    Google Scholar 

  • Murray, J. W., V. Grundmaris, and W. M. Smethie, 1978. Interstitial chemistry in the sediments of Saanich Inlet. Geochim. Cosmochim. Acta 42:1011–1026.

    Google Scholar 

  • Naumov, G. B., B. N. Ryzhenco, and I. L. Khodakovski, 1974. Handbook of Thermodyanic Data (translated from the Russian edition, 1971, by G. L. Solermani) NTIS report PB-226722, 328 pp.

  • Nuhfer, E. B. and A. S. Pavlovic, 1979. Association of kaolinite with pyrite framboids. J. Sed. Petrol 49:321–324.

    Google Scholar 

  • Olshanskii, YA. I. and V. V. Ivanenko, 1958. Mechanism of mass transfer in the formation of hydrothermal deposits of sulphides. Tr. Inst. Geol. rudn. Mestorosh. 16:14–46.

    Google Scholar 

  • Postma, D., 1982. Pyrite and siderite formation in brackish and freshwater swamp sediments. Am. J. Sci. 282:1151–1183.

    Google Scholar 

  • Presley, B., Y. Yolodny, A. Nissenbaum, and I. R. Kaplan, 1972. Early diagenesis in a reducing fjord. Saanich Inlet, British Columbia. 2. Hydrogr. Rept. 23, 97 pp.

  • Psenner, R., 1983. Die Entstehung von Pyrit in rezenten Sedimenten des Piburger Sees. Schweiz. Z. Hydrol. 45:219–232.

    Google Scholar 

  • Richards, F. A. and R. F. Vaccaro, 1956. The Cariaco Trench, an anaerobic basin in the Carribean Sea. Deep Sea Res. 3:214–228.

    Google Scholar 

  • Richards, F. A., 1964. Chemical observations in some anoxic sulphide bearing basins and fjords. Proc. Second Int. Water Pollution Res. Conf., Pergamon, pp 215–243.

  • Richards, F. A., J. D. Cline, W. W. Broenkow, and L. P. Atkinson, 1965. Some consequences of the decomposition of organic matter in Lake Nitinat, an anoxic Fjord. Limnol. Oceanogr. 10 (Suppl.):R185-R201.

    Google Scholar 

  • Richards, F. A., 1975. The Cariaco basin (trench). Oceanogr. Mar. Biol. Annu. Rev. 13:11–67.

    Google Scholar 

  • Robie, R. A., 1966. Thermodynamic properties of minerals. Mem. Am. Geol. Soc. 97:437–458.

    Google Scholar 

  • Robie, R. A., B. S. Hemingway, and J. R. Fisher, 1978. Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures. Geol. Surv. Bull 1452, U.S. Gov., Washington.

    Google Scholar 

  • Robinson, R. A. and R. H. Stokes, 1959. Electrolyte Solutions, 2nd edn. Butterworths, London.

    Google Scholar 

  • Ross, D. A. and E. T. Degens, 1974. Recent sediment of Black Sea. In: E. T. Degens and D. A. Ross (Editors), The Black Sea: Geology, Chemistry and Biology. AAPG Mem., 20, pp 183–199.

  • Sillen, L. G. and A. E. Martell, 1964. Stability Constants. Special publication No. 17, Chem. Soc.

  • Sillen, L. G. and A. E. Martell, 1971. Stability Constants. Supplement No. 1, Special publications No. 25, Chem. Soc.

  • Smith, R. M. and A. E. Martell, 1976. Critical Stability Constants, Vol. 4. Inorganic Complexes, Plenum.

    Google Scholar 

  • Spencer, D. W. and P. G. Brewer, 1971. Vertical advection diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in waters of the Black Sea. J. Geophys. Res. 76:5877–5892.

    Google Scholar 

  • Spencer, D. W., P. G. Brewer, and P. L. Sachs, 1972. Aspects of the distribution and composition of suspended matter in the Black Sea. Geochim. Cosmochim. Acta 36:71–86.

    Google Scholar 

  • Stauffer, R. E., 1986. Cycling of manganese and iron in Lake Mendota, Wisconsin. Environ. Sci. Technol. 20:449–457.

    Google Scholar 

  • Stumm, W. and J. J. Morgan, 1981. Aquatic Chemistry. Wiley, New York, N. Y. 780 pp.

    Google Scholar 

  • Tewari, P. H. and A. B. Campbell, 1976. Dissolution of iron sulphide (Troilite) in aqueous sulphuric acid. J. Phys. Chem. 80:1844–1848.

    Google Scholar 

  • Tewari, P. H., G. Wallace, and A. B. Campbell, 1978. The solubility of iron sulphides and their role in mass transport in Girdler-Sulphide heavy water plants. Rep. At. Energy Can. Ltd., AECL-5960, 1–34.

    Google Scholar 

  • Tewari, P. H. and A. B. Campbell, 1979. Dissolution of iron during the initial corrosion of carbon steel in aqueous H2S solutions. Can. J. Chem. 57:188–196.

    Google Scholar 

  • Vaughan, D. J. and J. R. Craig, 1978. Mineral Chemistry of Metal Sulphides. Cambridge University Press, Cambridge, 493 pp.

    Google Scholar 

  • Ward, J. C., 1970. The structure and properties of some iron sulphides. Rev. Pure Appl. Chem. 20:175–206.

    Google Scholar 

  • Weigel, O., 1906. Behaviour of sulphides of heavy metals in water solution. Machr. Kgl. Geo. Wiss. Gottingen math. phys. Kl. 525–548.

  • Weigel, O., 1907. The solubility of the sulphides of the heavy metals in water. Z. Physik. Chem. 58:293–300.

    Google Scholar 

  • Wersin, P., W. Stumm, and J. Bruno, 1991. The solubility of FeCO3(s) at 25°C. Geochim. Cosmochim. Acta, in press.

  • Whitfield, M., 1979. Activity coefficients in natural waters. In: R. M. Pytkowicz (Editor), Activity Coefficients in Electrolyte Solutions, Vol. 2., CRC Press, Florida.

    Google Scholar 

  • Whitfield, M., R. A. Butler, and A. K. Covington, 1985. The determination of pH in estuarine waters. I. Definition of pH scales and the selection of buffers. Oceanol. Acta 8:423–432.

    Google Scholar 

  • Yagi, A. and I. Shimodaira, 1986. Seasonal change of iron and manganese in Lake Fukami-ike — occurrence of turbid manganese layer. Jpn. J. Limnol. 47:279–289.

    Google Scholar 

  • Zehnder, J. B. A. and W. Stumm, 1988. Geochemistry and biogeochemistry of anaerobic habitats. In: A. J. B. Zehnder (Editor), Biology of anaerobic microorganisms, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davison, W. The solubility of iron sulphides in synthetic and natural waters at ambient temperature. Aquatic Science 53, 309–329 (1991). https://doi.org/10.1007/BF00877139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877139

Key words

Navigation