Skip to main content
Log in

Relation of fracture resistance to fabric for granitic rocks

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

Double-torsion specimens of two granitic rocks were prepared in several directions with reference to microcracks fabric. Even for the same rock and at the same stress levels, the observed crack velocities in two granitic rocks were dependent on both the propagation direction and the opening direction. The maximum difference by several orders of magnitude was found for both rocks. The highest crack velocity was observed when the subcritical crack was parallel to most of the preexisting cracks. The maximum critical stress intensity factor was about twice as high as the minimum one in different directions. An analysis for a thin plate having anisotropic elasticity under torsional load showed that the observed difference in the crack velocity and the critical stress intensity factor was not an error due to conventional equations derived on the assumption of isotropic elasticity but the true material's property. As the preferred orientation of microcracks has been pointed out for many granitic rocks, we can conclude that the anisotropic nature of the fracture resistance of the two granitic rocks used in this study was not exceptional. A region of a transport-limited velocity was not found for rocks, even at the velocity of 10−2 m/s, that is almost equal to the theoretical limit of the stress corrosion cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R., andMcMillan, P. W. (1977),Review: Static Fatigue of Glass, J. Mat. Sci.12, 643–657.

    Google Scholar 

  • Anderson, O. L., andGrew, P. C. (1977),Stress Corrosion Theory of Crack Propagation with Applications to Geophysics, Rev. Geophys. Space Phys.15, 77–104.

    Google Scholar 

  • Atkinson, B. K. (1979),A Fracture Mechanics Study of Subcritical Tensile Cracking of Quartz in Wet Environments, Pure and Appl. Geophys.117, 1011–1024.

    Google Scholar 

  • Atkinson B. K. (1984),Subcritical Crack Growth in Geologic Materials, J. Geophys. Res.89, 4077–4114.

    Google Scholar 

  • Atkinson, B. K. andRawlings, R. D.,Acoustic emission during stress corrosion cracking in rocks InEarthquake Prediction (eds. Simpson, D. W., and Richards, P.) (American Geophysical Union, Washington, D.C. 1981) pp. 605–616.

    Google Scholar 

  • Atkinson, B. K., andMeredith, P. G. (1981),Stress Corrosion Cracking of Quartz: A Note on the Influence of Chemical Environment, Tectonophys.77, T1-T17.

    Google Scholar 

  • Atkinson, B. K., andMeredith, P. G. The theory of subcritical crack growth with applications to minerals and rocks. InFracture Mechanics of Rock (ed. Atkinson B. K.) (Academic Press, London 1987a) pp. 111–166.

    Google Scholar 

  • Atkinson, B. K., andMeredith, P. G.,Experimental fracture mechanics data for rocks and minerals. InFracture Mechanics of Rock (ed. Atkinson, B. K.) (Academic Press, London 1987b) pp. 477–525.

    Google Scholar 

  • Balk, R. (1937),Structural Behavior of Igneous Rocks, Mem. Geol. Soc. Am., 177 pp.

  • Charles, R. J. (1958),Static Fatigue of Glass. I, J. Appl. Phys.29, 1549–1553.

    Google Scholar 

  • Charles, R. J.,The strength of silicate glasses and some crystalline oxides. InFracture (eds. Averbach, B. L., Felbeck, D. K., Hahn, G. T., and Thomas, D. A.) (MIT Press, Cambridge, Mass. 1959) pp. 225–250.

    Google Scholar 

  • Costin, L. S.,Time-dependent deformation and failure. InFracture Mechanics of Rock (ed. Atkinson, B. K.) (Academic Press, London 1987) pp. 167–215.

    Google Scholar 

  • Costin, L. S. andMecholsky, J. J. (1983),Time dependent crack growth and failure in brittle rock InProc. 24th U.S. Symposium on Rock Mechanics (ed. Mathewson, C. C.), pp. 385–394.

  • Cruden, D. M. (1970),A Theory of Brittle Creep in Rock under Uniaxial Compression, J. Geophys. Res.75, 3431–3442.

    Google Scholar 

  • Dale, T. N. (1923),The Commercial Granites of New England. Part I, Bull. U.S. Geol. Surv.738, 1–97.

    Google Scholar 

  • Darot, M., andGueguen, Y. (1986),Slow Crack Growth in Minerals and Rocks: Theory and Experiments, Pure and Appl. Geophys.124, 677–692.

    Google Scholar 

  • Das, S., andScholz, C. H. (1981),Theory of Time-dependent Rupture in the Earth, J. Geophys. Res.86, 6039–6051.

    Google Scholar 

  • Evans, A. G. (1972),A Method for Evaluating the Time-dependent Failure Characteristics of Brittle Materials and its Applications to Polycrystalline Alumina, J. Mat. Sci.7, 1137–1146.

    Google Scholar 

  • Ferber, M. K., andBrown, S. D. (1980),Subcritical Crack Growth in Dense Alumina Exposed to Physiological Media, J. Am. Ceram. Soc.63, 424–429.

    Google Scholar 

  • Griffith, A. A. (1920),The Phenomena of Rupture and Flow in Solids, Philos. Trans. Roy. Soc. London Ser.A 221, 163–198.

    Google Scholar 

  • Hadley, K. (1975),Azimuthal Variation of Dilatancy, J. Geophys. Res.80, 4845–4850.

    Google Scholar 

  • Hoagland, R. G., Hahn, G. T., andRosenfield, A. R. (1973),Influence of Microstructure on Fracture Propagation in Rocks, Rock Mech.5, 77–106.

    Google Scholar 

  • Isnard, P., andLeymarie, P. (1964),Observations sur le fil du granite dans les carrières du Sidobre (Tarn), Sci. Terre, Nancy9, 423–437.

    Google Scholar 

  • Kies, J. A., andClark, A. B. J.,Fracture propagation rates and times to fail following proof stress in bulk glass. InFracture 1969 (ed. Pratt, P. L.) (Chapman and Hall, London 1969) pp. 483–530.

    Google Scholar 

  • Kudo, Y., Hashimoto, K., Sano, O., andNakagawa, K.,Relation between physical anisotropy and microstructures of granitic rock in Japan InProc. 6th Int. Congress on Rock Mech. (eds. Herget, G., and Vongpaisal, S.) (A. A. Balkema, Rotterdam 1987) pp. 429–432.

    Google Scholar 

  • Lawn, B. R. (1975),An Atomistic Model of Kinetic Crack Growth in Brittle Solids, J. Mat. Sci.10, 469–480.

    Google Scholar 

  • Lawn, B. R., andWilshaw, T. R. Fracture of Brittle Solids (Cambridge University Press, Cambridge 1975) 204 pp.

    Google Scholar 

  • Lekhnitskii, S. G.,Anisotropic Plates (Translated from Russian by Tsai, S. W. and Cheron, T.) (Gordon and Breach, New York 1968) 534 pp.

    Google Scholar 

  • Martin, R. J., III (1972)Time-dependent Crack Growth in Quartz and its Application to the Creep of Rocks, J. Geophys. Res.77, 1406–1419.

    Google Scholar 

  • Martin, R. J., III, andDurham, W. B. (1975),Mechanism of Crack Growth in Quartz, J. Geophys. Res.80, 4837–4844.

    Google Scholar 

  • Michalske, T. A., Singh, M., andFréchette, V. D.,Experimental observation of crack velocity and crack front shape effects in double-torsion fracture mechanics tests. InFracture Mechanics for Ceramics, Rocks and Concrete (eds. Freiman S. W., and Fuller, E. R., Jr.) (STP 745, ASTM, Philadelphia 1981) pp. 3–12.

    Google Scholar 

  • Mizutani, H., Spetzler, H., Getting, I., Martin, R. J., III, andSoga, N. (1977)The Effect of Outgassing upon the Closure of Cracks and the Strength of Lunar Analogues, Proc. Lunar Sci. Conf.8, 1235–1248.

    Google Scholar 

  • Mogi, K. (1977),Dilatancy of Rocks under General Triaxial Stress States with Special Reference to Earthquake Precursors J. Phys. Earth25, 203–217.

    Google Scholar 

  • Nur, A., andSimmons, G. (1970),The Origin of Small Cracks in Igneous Rocks, Int. J. Rock Mech. Min. Sci.7, 307–314.

    Google Scholar 

  • Nye, J. F.,Physical Properties of Crystals (Clarendon Press, Oxford 1957) 322 pp.

    Google Scholar 

  • Osborne, F. F. (1935),Rift, Grain, Hardway in Some Pre-Cambrian Granites, Quebec, Econ. Geol.30, 540–551

    Google Scholar 

  • Peck, L., Nolen-Hoeksema, R. C. Barton, C. C., andGordon, R. B. (1985),Measurement of Resistance of Imperfectly Elastic Rock to the Propagation of Tensile Cracks, J. Geophys. Res. 90, 7827–7836.

    Google Scholar 

  • Peng, S., andJohnson, A. M. (1972),Crack Growth and Faulting in Cylindrical Specimens of Chelmsford Granite, Int. J. Rock Mech. Min. Sci.9, 37–86

    Google Scholar 

  • Pletka, B. J., andWiederhorn, S. M.,Subcritical crack growth in glass ceramics. InFracture Mechanics of Ceramics, Vol. 4 (eds. Bradt, R. C., Hasselman, D. P. H., and Lange, F. F.) (Plenum Press, New York 1978) pp. 745–760.

    Google Scholar 

  • Pletka, B. J., Fuller, E. R., Jr. andKoepke, B. G.,An evaluation of double torsion testing. InFracture Mechanics Applied to Brittle Materials (ed. Freiman, S. W.) (STP 678, ASTM, Philadelphia 1979) pp. 19–37.

    Google Scholar 

  • Price, N. J.,Fault and Joint Development (Pergamon Press, Oxford 1966) 176 pp.

    Google Scholar 

  • Sano, O.,Fundamental Study on the Mechanism of Brittle Fracture of Rocks, Ph.D. Thesis (Kyoto Univ., Kyoto, Japan, 1978).

    Google Scholar 

  • Sano, O. (1981),A Note on the Sources of Acoustic Emissions Associated with Subcritical Crack Growth, Int. J. Rock. Mech. Min. Sci. and Geomech. Abstr.18, 259–263.

    Google Scholar 

  • Sano, O. (1988),A Revision of the Double-torsion Technique for Brittle Materials, J. Mat. Sci.23, 2505–2511.

    Google Scholar 

  • Sano, O., Ito, I. andTerada, M. (1981),Influence of Strain Rate on Dilatancy and Strength of Oshima Granite under Uniaxial Compression, J. Geophys. Res.86, 9299–9311.

    Google Scholar 

  • Sano, O., Ehara, S., andTerada, M. (1982),A Study of the Time-dependent Microfracturing and Strength of Oshima Granite, Tectonophys.84, 343–362.

    Google Scholar 

  • Sano, O., Kudo, Y., andMizuta, Y. (1992),Experimental Determination of Elastic Constants of Oshima Granite, Barre Granite and Chelmsford Granite, J. Geophys. Res.97, 3367–3379.

    Google Scholar 

  • Scholz, C. H. (1968a),Mechanism of Creep in Brittle Rock, J. Geophys. Res.73, 3295–3302.

    Google Scholar 

  • Scholz, C. H. (1968b),Microfractures, Aftershocks, and Seismicity, Bull. Seismol. Soc. Am.58, 1117–1130.

    Google Scholar 

  • Scholz, C. H. (1972),Static Fatigue of Quartz, J. Geophys. Res.77, 2104–2114.

    Google Scholar 

  • Scholz, C. H., andKoczynski, T. A. (1979),Dilatancy Anisotropy and the Response of Rock to Large Cyclic Loads, J. Geophys. Res.84, 5525–5534.

    Google Scholar 

  • Sih, G. C., Paris, P. C., andIrwin, G. R. (1965),On Cracks in Rectilinearly Anisotropic Bodies, Int. J. Fract. Mech.1, 189–203.

    Google Scholar 

  • Swanson, P. L.,Stress Corrsion Cracking in Westerly Granite: An Examination by the Double Torsion Technique, Ms. Thesis (University of Colorado, Boulder, CO 1980).

    Google Scholar 

  • Swanson, P. L. (1984),Subcritical Crack Growth and Other Time-and Environment-dependent Behavior in Crustal Rocks, J. Geophys. Res.89, 4137–4152.

    Google Scholar 

  • Swanson, P. L. Subcritical Fracture Propagation in Rocks: An Examination Using the Methods of Fracture Mechancis and Nondestructive Testing, Ph.D. Thesis (University of Colorado, Boulder, CO 1985).

    Google Scholar 

  • Waza, T., Kurita, K. andMizutani, H. (1980),The Effect of Water on the Subcritical Crack Growth in Silicate Rocks, Tectonophys.67, 25–34.

    Google Scholar 

  • Wiederhorn, S. M. (1967),Influence of Water Vapor on Crack Propagation in Soda-lime Glass, J. Am. Ceram. Soc.50, 407–414.

    Google Scholar 

  • Wiederhorn, S. M., andBolz, L. H. (1970),Stress Corrosion and Static Fatigue of Glass, J. Am. Ceram. Soc.53, 543–548.

    Google Scholar 

  • Wiederhorn, S. M., andJohnson, H. (1973),Effect of Electrolyte pH on Crack Propagation in Glass, J. Am. Ceram. Soc.56, 192–197.

    Google Scholar 

  • Williams, D. P., andEvans, A. G. (1973),A Simple Method for Studying Slow Crack Growth, J. Test. Eval.1, 264–270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sano, O., Kudo, Y. Relation of fracture resistance to fabric for granitic rocks. PAGEOPH 138, 657–677 (1992). https://doi.org/10.1007/BF00876343

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876343

Key words

Navigation