Skip to main content
Log in

The histidine cycle: A new model for proton translocation in the respiratory heme-copper oxidases

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

A model of redox-linked proton translocation is presented for the terminal heme-copper oxidases. The new model, which is distinct both in principle and in detail from previously suggested mechanisms, is introduced in a historical perspective and outlined first as a set of general principles, and then as a more detailed chemical mechanism, adapted to what is known about the chemistry of dioxygen reduction in this family of enzymes. The model postulates a direct mechanistic role in proton-pumping of the oxygenous ligand on the iron in the binuclear heme-copper site through an electrostatic nonbonding interaction between this ligand and the doubly protonated imidazolium group of a conserved histidine residue nearby. In the model this histidine residue cycles between imidazolium and imidazolate states translocating two protons per event, the imidazolate state stabilized by bonding to the copper in the site. The model also suggests a key role in proton translocation for those protons that are taken up in reduction of O2 to water, in that their uptake to the oxygenous ligand unlatches the electrostatically stabilized imidazolium residue and promotes proton release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babcock, G. T., and Wikström, M. (1992).Nature (London) 356 301–309.

    PubMed  Google Scholar 

  • Blair, D. F., Gelles, J., and Chan, S. I. (1986).Biophys. J. 50 713–733.

    PubMed  Google Scholar 

  • Chance, B., Leigh, J. S., Jr., and Waring, A. (1977). InStructure and Function of Energy-Transducing Membranes (van Dam, K., and van Gelder, B. F., eds.), Elsevier/North-Holland, Amsterdam, pp. 1–10.

    Google Scholar 

  • Crofts, A. R., and Wraight, C. A. (1983).Biochim. Biophys. Acta 726 149–185.

    Google Scholar 

  • Gelles, J., Blair, D. F., and Chan, S. I. (1986).Biochim. Biophys. Acta 853 205–236.

    PubMed  Google Scholar 

  • Gennis, R. B., Barquera, B., Hacker, B., Doren, S. R., Arnaud, S., Crofts, A. R., Davidson, E., Gray, K. A., and Daldal, F. (1993).J. Bioenerg. Biomembr. 25 195–209.

    PubMed  Google Scholar 

  • Han, S., Ching, Y.-C., and Rousseau, D. L. (1990).Nature (London) 348 89–90.

    PubMed  Google Scholar 

  • Hosler, J. P., Ferguson-Miller, S., Calhoun, M. W., Thomas, J. W., Hill, J., Lemieux, L., Ma, J., Georgiou, C., Fetter, J., Shapleigh, J., Tecklenburg, M. M. J., Babcock, G. T., and Gennis, R. B. (1993).J. Bioenerg. Biomembr. 25 121–136.

    PubMed  Google Scholar 

  • Karlin, K. D., Nanthakumar, A., Fox, S., Murthy, N. N., Ravi, N., Huynh, B. H., Orosz, R. D., and Day, E. P. (1974).J. Am. Chem. Soc. 116 4753–4763.

    Google Scholar 

  • Krab, K., and Wikström, M. (1978).Biochim. Biophys. Acta 504 200–214.

    PubMed  Google Scholar 

  • Krab, K., and Wikström, M. (1979).Biochim. Biophys. Acta 548 1–15.

    PubMed  Google Scholar 

  • Larsen, R. W., Pan, L-P., Musser, S. M., Li, Z., and Chan, S. I. (1992).Proc. Natl. Acad. Sci. USA 89 723–727.

    PubMed  Google Scholar 

  • Lauraeus, M., and Wikström, M. (1993).J. Biol. Chem. 268 11470–11473.

    PubMed  Google Scholar 

  • Lee, S. C., and Holm, R. H. (1993).J. Am. Chem. Soc. 115 11789–11798.

    Google Scholar 

  • Mitchell, P. (1976).Biol. Rev. 41 445–502.

    Google Scholar 

  • Mitchell, P. (1976).J. Theor. Biol. 62 327–367.

    PubMed  Google Scholar 

  • Mitchell, P. (1981). InOf Oxygen, Fuels, and Living Matter. Part 1 (Semenza, G., ed.), Wiley, New York, 1–160.

    Google Scholar 

  • Mitchell, P. (1987).FEBS Lett. 222 235–245.

    PubMed  Google Scholar 

  • Mitchell, P. (1988).Ann. N. Y. Acad. Sci. 550 185–198.

    PubMed  Google Scholar 

  • Mitchell, P., Mitchell, R., Moody, A. J., West, I. C., Baum, H., and Wrigglesworth, J. (1985).FEBS Lett. 188 1–7.

    PubMed  Google Scholar 

  • Mitchell, R., and Rich, P. (1994).Biochim. Biophys. Acta,1186 19–26.

    PubMed  Google Scholar 

  • Moyle, J., and Mitchell, P. (1978).FEBS Lett. 88 268–272.

    PubMed  Google Scholar 

  • Nanthakumar, A., Fox, S., Murthy, N. N., and Karlin, K. D. (1993).J. Am. Chem. Soc. 115 8513–8514.

    Google Scholar 

  • Papa, S. (1976).Biochim. Biophys. Acta 456 39–84.

    PubMed  Google Scholar 

  • Puustinen, A., Finel, M., Virkki, M., and Wikström, M. (1989).FEBS Lett. 249 163–167.

    PubMed  Google Scholar 

  • Raitio, M., and Wikström, M. (1994).Biochim. Biophys. Acta,1186 100–106.

    Google Scholar 

  • Rousseau, D. L., Ching, Y.-C., and Wang, J. (1993).J. Bioenerg. Biomembr. 25 165–176.

    PubMed  Google Scholar 

  • Sawyer, D. T. (1991).Oxygen Chemistry, (Oxford University Press, New York and Oxford), pp. 52–81.

    Google Scholar 

  • Thomas, J. W., Puustinen, A., Alben, J. O., Gennis, R. B., and Wikström, M. (1994).Biochemistry 32 10923–10928.

    Google Scholar 

  • van der Oost, J., de Boer, A. P. N., de Gier, J.-W. L., Zumft, W. G., Stouthamer, A. H., and van Spanning, R. J. M. (1994).FEMS Microbiol. Lett.,121 1–10.

    PubMed  Google Scholar 

  • Varotsis, C., and Babcock, G. T. (1990).Biochemistry 29 7357–7362.

    PubMed  Google Scholar 

  • Verkhovsky, M. I., Morgan, J. E., and Wikström, M. (1994).Biochemistry 33 3079–3086.

    PubMed  Google Scholar 

  • Vygodina, T., and Konstantinov, A. A. (1987).FEBS Lett. 219 387–392.

    PubMed  Google Scholar 

  • Warshel, A., and Russell, S. T. (1984).Q. Rev. Biophys. 17 283–422.

    PubMed  Google Scholar 

  • Wikström, M. (1977).Nature (London) 266 271–273.

    PubMed  Google Scholar 

  • Wikström, M. (1988).FEBS Lett. 231 247–252.

    PubMed  Google Scholar 

  • Wikström, M. (1989).Nature (London) 338 776–778.

    PubMed  Google Scholar 

  • Wikström, M., and Casey, R. (1985).FEBS Lett. 183 293–298.

    PubMed  Google Scholar 

  • Wikström, M., and Krab, K. (1978). InEnergy Conservation in Biological Membranes (Schäfer, G., and Klingenberg, M., eds.), Springer, Berlin, pp. 128–139.

    Google Scholar 

  • Wikström, M., and Krab, K. (1979).Biochim. Biophys. Acta 549 177–222.

    PubMed  Google Scholar 

  • Wikström, M., and Saari, H. (1977).Biochim. Biophys. Acta 462 347–361.

    PubMed  Google Scholar 

  • Wikström, M., Krab, K., and Saraste, M. (1981). InCytochrome Oxidase: A Synthesis Academic Press, New York and London.

    Google Scholar 

  • Wikström, M., Bogachev, A., Finel, M., Morgan, J. E., Puustinen, A., Raitio, M., Verkhovskaya, M. L., and Verkhovsky, M. I. (1994).Biochim. Biophys. Acta,1187 106–111.

    PubMed  Google Scholar 

  • Williams, R. J. P. (1985). InThe Enzymes of Biological Membranes, Vol. 4, (Martonosi, A. N., ed.), Plenum, New York, pp. 71–110.

    Google Scholar 

  • Woodruff, W. H. (1993).J. Bioenerg. Biomembr. 25 177–188.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, J.E., Verkhovsky, M.I. & Wikström, M. The histidine cycle: A new model for proton translocation in the respiratory heme-copper oxidases. J Bioenerg Biomembr 26, 599–608 (1994). https://doi.org/10.1007/BF00831534

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00831534

Key words

Navigation