Skip to main content
Log in

Hamiltonian truncation of the shallow water equation

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this Letter, we describe a truncation of the Eulerian description of the shallow water equation of climate modeling to a finite-dimensional Hamiltonian system. The technique is to use an isomorphism from a semidirect product Poisson manifold to a direct product of Poisson manifolds, both of whose components are truncatable to finite-dimensional Poisson manifolds, based on Moser's theorem on volume elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R. and Marsden, J.,Foundations of Mechanics, 2nd edn, Benjamin/Cummings, Reading, 1978.

    Google Scholar 

  2. Benzel, S., Ge, Z., and Scovel, C., Elementary construction of higher order Lie-Poisson integrators,Phys. Lett. A 174, 229–232 (1993).

    Google Scholar 

  3. Brenier, Y., Polar factorization and monotone rearrangement of vector-valued functions,Comm. Pure Appl. Math. 44, 375–417 (1991).

    Google Scholar 

  4. Channell, P. J. and Scovel, J. C., Symplectic integration of Hamiltonian systems,Non-linearity 3, 231–259 (1990).

    Google Scholar 

  5. Channell, P. J. and Scovel, J. C., Integrators for Lie-Poisson dynamical systems,Physica D 50, 80–88 (1991).

    Google Scholar 

  6. Cheng, S-Y. and Yau, S-T., On the regularity of the Monge-Ampere equation det( 2 u/∂x i ∂x j ) =F(x, u),Comm. Pure Appl. Math. 30, 41–68 (1977).

    Google Scholar 

  7. Chynoweth, S., The semi-geostrophic equations and the Legendre transform, PhD thesis, University of Reading.

  8. Cullen, M. J. P. and Purser, R. J., Properties of the Lagrangian semigeostropic equation,J. Atmos. Sci. 46(17), 2684–2697 (1989).

    Google Scholar 

  9. Cullen, M. J. P. and Purser, R. J., An extended Lagrangian theory of semi-geostrophic frontogenesis,J. Atmos. Sci. 41(9), 1477–1497 (1984).

    Google Scholar 

  10. Cullen, M. J. P., Norbury, J., and Purser, R. J., Generalized Lagrangian solutions for atmospheric and oceanic flows,SIAM J. Appl. Math. 51(1), 20–31 (1991).

    Google Scholar 

  11. Dukowicz, J. K., Cline, M. C., and Addessio, F. L., A general topology Godunov method,J. Comp. Phys. 82(1), 29–63 (1989).

    Google Scholar 

  12. Ebin, D. G. and Marsden, J. E., Groups of diffeomorphisms and the motion of an incompressible fluid,Ann. of Math. (2)92, 102–163 (1970); Theory and Lie-Poisson integrators,Phys. Lett. A,133(3), 134–139 (1988).

    Google Scholar 

  13. Fairlie, D. B. and Zachos, C. K., Infinite-dimensional algebras, sine brackets, and SU(∞),Phys. Lett. B 224, 101–107 (1989).

    Google Scholar 

  14. Feng Kang, Difference scheme for Hamiltonian formalism and symplectic geometry,J. Comput. Math. 4, 27–28 (1986).

    Google Scholar 

  15. Feng Kang and Qin Meng-Zhao, The symplectic methods for the computation of Hamiltonian equations, inNumerical Methods for Partial Differential Equations, Lecture Notes in Math. 1297, Springer-Verlag, New York, 1988.

    Google Scholar 

  16. Forest, E. and Ruth, R., Fourth-order symplectic integration,Physica D 43, 105–117 (1990).

    Google Scholar 

  17. Ge, Z. and Marsden, J., Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators,Phys. Lett. A 133, 135–139 (1988).

    Google Scholar 

  18. Ge, Z., Equivariant symplectic difference schemes and generating functions,Physica D 49, 376–386 (1991).

    Google Scholar 

  19. Guillemin, V. and Sternberg, S.,Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.

    Google Scholar 

  20. Holm, D. D., Kupershmidt, B. A., and Levermore, C. D., Canonical maps between Poisson brackets in eulerian and Lagrangian description of continuum mechanics,Phys. Lett. A 98(8/9), 389–395 (1983).

    Google Scholar 

  21. Hoppe, J., Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, Reprint of 1982 MIT thesis,Elem. Part. Res. J. (Kyoto)83(3), 145–202 (1989/1990).

    Google Scholar 

  22. Krishnaprasad, P. S. and Marsden, J. E., Hamiltonian structures and stability for rigid bodies with flexible attachments,Arch. Rational Mech. Anal. 98, 71–93 (1987).

    Google Scholar 

  23. Liao, G., Trong-Whay, P., and Su, J., A numerical grid generator based on Moser's deformation method, preprint (1992).

  24. Liao, G. and Su, J., Grid generation via deformation,Appl. Math. Lett. 5(3), 27–29 (1992).

    Google Scholar 

  25. Liao, G. and Anderson, D., A new approach to grid generation,Applic. Anal. 44, 285–298 (1992).

    Google Scholar 

  26. Marsden, J. and Ratiu, T., Reduction of Poisson manifolds,Lett. Math. Phys. 11, 161–169 (1986).

    Google Scholar 

  27. Marsden, J., Ratiu, T., Schmid, R., Spencer, R., and Weinstein, A., Hamiltonian systems with symmetry coadjoint orbits and plasma physics,Proc. IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Torino, 7–11 June 1982, Atti della Academia della Scienze di Torino,117, 289–340.

  28. Marsden, J. and Ratiu, T.,Mechanics and Symmetry, Springer-Verlag, to appear.

  29. Marsden, J., Ratiu, T., and A. Weinstein, Semidirect products and reduction in mechanics,Trans. Am. Math. Soc. 281:1 (1984), 147–176.

    Google Scholar 

  30. Montgomery, R., Marsden, J., and T. Ratiu, Gauged Lie-Poisson structures,Cont. Math. AMS 28 (1984), 101–114.

    Google Scholar 

  31. Morrison, P. M. and Greene, J. M., Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics,Phys. Rev. Lett. 45, 790–794 (1980).

    Google Scholar 

  32. Moser, J., On the volume elements on a manifold,Trans. Amer. Math. Soc. 120, 286–294 (1965).

    Google Scholar 

  33. Pedlosky, J.,Geophysical Fluid Dynamics, Springer, New York, 1979.

    Google Scholar 

  34. Pogorelov, A. V.,Monge-Ampere Equations of Elliptic Type, Noordhoff, Groningen, 1964.

    Google Scholar 

  35. Rouhi, A. and Abarbanel, H. D. I., Symmetric truncations of the shallow water equations, A. Brandt, S. E. Ramberg, and M. F. Shlesinger, (Eds), inNonlinear Dynamics of Ocean Waves, World Scientific, Singapore, 1992.

    Google Scholar 

  36. Scovel, C. and Weinstein, A., Finite-dimensional Lie-Poisson approximations to Vlasov-Poisson equations, to appear inComm. Pure Appl. Math.

  37. Sanz-Serna, J. M., Runge-Kutta schemes for Hamiltonian systems,BIT 28, 877–883 (1988).

    Google Scholar 

  38. Suzuki, M., Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations,Phys. Lett. A 146, 319–323 (1990).

    Google Scholar 

  39. Yoshida, H., Construction of higher order symplectic integrators,Phys. Lett. A 150, 262–268 (1990).

    Google Scholar 

  40. Zeitlin, V., Finite-mode analogues of 2D ideal hydrodynamics: Coadjoint orbits and local canonical structure,Physica D 49, 353–362 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, G., Scovel, C. Hamiltonian truncation of the shallow water equation. Lett Math Phys 31, 1–13 (1994). https://doi.org/10.1007/BF00751167

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00751167

Mathematics Subject Classifications (1991)

Navigation