Skip to main content
Log in

Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span

  • Glycoconjagate Journal
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Comparing the properties of ‘young’ and senescent (‘aged’) O+ erythrocytes isolated by applying ultracentrifugation in a self-forming Percoll gradient, we demonstrate that the sialic acids of membrane glycoconjugates control the life span of erythrocytes and that the desialylation of glycans is responsible for the clearance of the aged erythrocytes. This capture is mediated by a β-galactolectin present in the membrane of macrophages. The evidence supporting these conclusions is as follows:

  1. (1)

    Analysis by flow cytofluorimetry of the binding of fluorescein isothiocyanate labelled lectins specific for sialic acids shows that the aged erythrocytes bind less WGA, LPA, SNA and MAA than young erythrocytes. The binding of DSA and LCA is not modified. On the contrary, the number of binding sites of UEA-I specific for O antigen and of AAA decreases significantly. PNA and GNA do not bind to erythrocytes.

  2. (2)

    RCA120 as well asErythrina cristagalli andErythrina corallodendron lectins specific for terminal β-galactose residues lead to unexpected and unexplained results with a decrease in the number of lectin binding sites associated with increasing desialylation.

  3. (3)

    The glycoconjugates from the old erythrocytes incorporate more sialic acid than the young cells. This observation results from the determination of the rate of transfer by α-2,6-sialyltransferase of fluorescent or radioactiveN-acetylneuraminic acid, using as donors CMP-9-fluoresceinyl-NeuAc and CMP-[14C]-NeuAc, respectively.

  4. (4)

    Microscopy shows that the old erythrocytes are captured preferentially by the macrophages relative to the young ones. Fixation of erythrocytes by the macrophage membrane is inhibited by lactose, thus demonstrating the involvement of a terminal β-galactose specific macrophage lectin.

  5. (5)

    Comparative study of the binding of WGA, LPA, SNA and MAA to the aged erythrocytes and to thein vitro enzymatically desialylated erythrocytes shows that the desialylation rate of aged cells is low but sufficient to lead to their capture by the macrophages

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CMP-NeuAc:

cytidine monophosphateN-acetylneuraminate

CSB:

cell sialylation buffer

EDTA:

ethylene diamine tetraacetic acid

FITC:

fluoresceinyl isothiocyanate

9-FITC-NeuAc:

9-fluoresceinyl-N-acetylneuraminate

NeuAc:

N-acetylneuraminic acid

PAGE:

polyacrylamide gel electrophoresis

PBS:

Dulbecco's phosphate buffer saline solution

PMSF:

phenylmethyl-sulfonyl fluoride

RBC:

red blood cells

SCA:

Senescent Cell Antigen

SDS:

sodium dodecyl sulfate

SFG:

senescent factor glycopeptides

AAA:

Aleuria aurantia agglutinin

DSA:

Datura stramonium agglutinin

ECA:

Erythrina cristagalli agglutinin

GNA:

Galanthus nivalis agglutinin

LCA:

Lens culinaris agglutinin

LFA:

Limax flavus agglutinin

LPA:

Limulus polyphemus agglutinin

MAA:

Maackia amurensis agglutinin

PNA:

peanut agglutinin

RCA:

Ricinus communis agglutinin

SNA:

Sambucus nigra agglutinin

UEA-I:

Ulex europeus agglutinin-I

WGA:

Wheat germ agglutinin

References

  1. Schauer R (1982)Adv Carbohydr Chem Biochem 40:131–234.

    Google Scholar 

  2. Aminoff D (1985) InCellular and Molecular Approach of Aging, the Red Cell as a Model, (Eaton JW, Konzen DK, White JG eds), pp. 279–300. New York: Alan R Liss.

    Google Scholar 

  3. Danon D, Marikovsky Y (1988)Blood Cells 14:7–15.

    Google Scholar 

  4. Galili U (1988)Blood Cells 14:205–20.

    Google Scholar 

  5. Aminoff D (1988)Blood Cells 14:229–47.

    Google Scholar 

  6. Lutz HU (1990) InBlood Cell Biochemistry (Harris JR eds), pp. 81–120. New-York: Plenum Press.

    Google Scholar 

  7. Bartosz G (1991)Gerontology 37:33–67.

    Google Scholar 

  8. Garratty G (1991)Gerontology 37:68–94.

    Google Scholar 

  9. Aminoff D, Rolfes-Curl A, Supina E (1992)Arch Gerontol Geriatr, Suppl 3:7–16.

    Google Scholar 

  10. Piomelli S, Seaman C (1993)Am J Hematol 42:46–52.

    Google Scholar 

  11. Kay MMB (1994) InImmunobiology of Transfusion Medicine (Garratty G ed), pp. 173–98, New York: Marcel Dekker.

    Google Scholar 

  12. Kay MMB (1975)Proc Natl Acad Sci USA 72:3521–25.

    Google Scholar 

  13. Lutz HU, Kay MMB (1981)Mech Ageing Develop 15:65–75.

    Google Scholar 

  14. Lutz HU, Flepp R, Stringaro-Wipf G (1984)J Immunol 133:2610–18.

    Google Scholar 

  15. Kay MMB (1984)Proc Natl Acad Sci USA 81:5753–57.

    Google Scholar 

  16. Lutz HU, Bussolino F, Flepp R, Fasler S, Stammler P, Kazatchkine D, Arese P (1987)Proc Natl Acad Sci USA 84:7368–72.

    Google Scholar 

  17. Vaysse J, Gattegno L, Pilardeau P (1992)Eur J Haematol 48:83–86.

    Google Scholar 

  18. Bocci V (1976)Experientia 32:135–40.

    Google Scholar 

  19. Brovelli A, Pallavicini G, Sinigaglia F, Balduini CL, Balduini C (1976)Biochem J 158:497–500.

    Google Scholar 

  20. Khan MT, Wang KW, Villalobo A, Roufagalis BD (1994)J Biol Chem 269:10016–21.

    Google Scholar 

  21. Weed RI, Reed CF (1966)Am J Med 41:6881–98.

    Google Scholar 

  22. Lutz HU (1978)J Supromolec Struct 8:375–89.

    Google Scholar 

  23. Lutz HU (1979)J Biol Chem 25:11177–88.

    Google Scholar 

  24. Schlepper-Schäfer J, Kolb-Bachhofen V (1988)Blood Cells 14:259–69.

    Google Scholar 

  25. Pessina CP, Skiftas S (1983)Int J Biochem 15:277–79.

    Google Scholar 

  26. Stewart WB, Petenyl CW, Rose HM (1955)Blood 10:228–34.

    Google Scholar 

  27. Halbhuber KJ, Helmke U, Geyer G (1972)Folia Haematol 97:196–203.

    Google Scholar 

  28. Jancik J, Schauer R (1974)Hoppe Seyler's Z Physiol Chem 355:395–400.

    Google Scholar 

  29. Jancik J., Andres KH, von Düring M, Schauer R (1978)Cell Tiss Res 186:209–26.

    Google Scholar 

  30. Müller E, Franco MW, Schauer R (1981)Hoppe Seyler's Z Physiol Chem 362:1615–20.

    Google Scholar 

  31. Schlepper-Schäfer J, Kolb-Bachofen V, Kolb H (1983)Biochem Biophys Res Commun 115:551–59.

    Google Scholar 

  32. Aminoff D, Bell WC, Fulton I, Ingebrightsen I (1976)Am J Haematol 1:419–32.

    Google Scholar 

  33. Aminoff D, Vorder-Bruegge WF, Bell WC, Sarpolis K (1977)Proc Natl Acad Sci USA 74:1521–24.

    Google Scholar 

  34. Bell WC, Levy GN, Williams R, Aminoff D (1977)Proc Natl Acad Sci USA 74:4205–9.

    Google Scholar 

  35. Smedsrod B, Aminoff D (1983)Am J Haematol 15:123–33.

    Google Scholar 

  36. Smedsrod B, Aminoff D (1985)Am J Haematol 18:31–40.

    Google Scholar 

  37. Aminoff D, Golstein IJ, Supina E (1991)Glycoconjug J 8:175–76.

    Google Scholar 

  38. Kelm S, Schauer R (1988)Hoppe Seyler's Z Physiol Chem 369:693–704.

    Google Scholar 

  39. Kolb H, Friedrich E, Süss R (1981)Hoppe Seyler's Z Physiol Chem 362:1609–14.

    Google Scholar 

  40. Lutz HU, Stammler P, Fasler S, Ingold M, Fehr J (1992)Biochim Biophys Acta 1116:1–10.

    Google Scholar 

  41. Scatchard G (1949)Ann NY Acad Sci 51:660–72.

    Google Scholar 

  42. Kosa RE, Brossmer R, Gross HJ (1993)Biochem Biophys Res Commun 190:914–20.

    Google Scholar 

  43. Gross HJ, Sticher U, Brossmer R (1990)Anal Biochem 186:127–34.

    Google Scholar 

  44. Linderkamp O, Meiselman HJ (1982)Blood 59:1121–27.

    Google Scholar 

  45. Sorette MP, Galili U, Clark MR (1991)Blood 77:628–36.

    Google Scholar 

  46. Aminoff D, Ghalambor MA, Heinrich CJ (1981) InErythrocyte Membrane (Kruckenberg WC, Eaton JW, Brewer GJ eds) 2. Recent Clinical and Experimental Advances, pp. 269–278, New York: Alan R Liss.

    Google Scholar 

  47. Green GA, Rehn MM, Kabea VK (1985)Blood 65: 1127–33.

    Google Scholar 

  48. Gutowski KA, Hudson JL, Aminoff D (1991)Exp Gerontol 26:315–26.

    Google Scholar 

  49. Rolfes-Curl A, Ogden LL, Omann O, Aminoff D (1991)Exp Gerontol 26:327–45.

    Google Scholar 

  50. Sharon R, Fibach E (1991)Cytometry 12:545–49.

    Google Scholar 

  51. Fibach E, Sharon R (1994)Transfusion 34:328–32.

    Google Scholar 

  52. Cohen NS, Ekholm JE, Luthra MG, Hanahan DJ (1976)Biochim Biophys Acta 419:229–42.

    Google Scholar 

  53. Luner SJ, Szklarek D, Knox RJ, Seaman GVF, Josefowicz JY, Ware BR (1977)Nature 269:719–21.

    Google Scholar 

  54. Gattegno L, Perret G, Fabia F, Cornillot P (1981)Mech Ageing Develop 16:205–19.

    Google Scholar 

  55. Danon D, Marikovsky Y, Skutelsky E (1971) InRed Cell Structure and Metabolism (Ramot B ed) pp. 23–38, New York: Academic Press.

    Google Scholar 

  56. Choy YM, Wong SL, Lee CY (1979)Biochem Biophys Res Commun 91:410–15.

    Google Scholar 

  57. Gattegno L, Bladier D, Garnier M, Cornillot P (1976)Carbohydr Res 52:197–208.

    Google Scholar 

  58. Gattegno L, Fabia F, Bladier D, Cornillot P (1979)Biomedicine 30:194–99.

    Google Scholar 

  59. Bladier D, Gattegno L, Fabia F, Perret G, Cornillot P (1980)Carbohydr Res 83:371–76.

    Google Scholar 

  60. Shinozuka T, Takei S, Yanagida JI, Watanabe H, Ohkuma S (1988)Life Sci 43:683–89.

    Google Scholar 

  61. Gutovski KA, Linseman DA, Aminoff D (1988)Carbohydr Res 178:307–13.

    Google Scholar 

  62. Prokop O, Uhlenbruck G (1969) InHuman Blood and Serum Groups (Prokop O, Uhlenbruck G eds) pp. 103–10.

  63. Tannert C, Schmidt G, Klatt D (1979)Acta Biol Med Germ 38:663–67.

    Google Scholar 

  64. Henrich CJ, Aminoff D (1983)Carbohydr Res 120:55–56.

    Google Scholar 

  65. Vaysse J, Gattegno L, Bladier D, Aminoff D (1986)Proc Natl Acad Sci USA 83:1339–48.

    Google Scholar 

  66. Aminoff D (1988)Glycoconjugate J 5:356.

    Google Scholar 

  67. Aminoff D, Goldstein I J, Supina E (1991)Glycoconjugate J 8:175–76.

    Google Scholar 

  68. Shinozuka T, Takei S, Yanagida J, Watanake H, Ohkuma S (1988)Blut 57:117–23.

    Google Scholar 

  69. Gattegno L, Perret G, Fabia F, Bladier D, Cornillot P (1981)Carbohydr Res 95:283–90.

    Google Scholar 

  70. Gattegno L, Perret G, Felon M, Cornillot P (1982)Comp Biochem Physiol 73B:725–28.

    Google Scholar 

  71. Ghalambor MA, Aminoff D (1979)Fed Proc 38:2235.

    Google Scholar 

  72. Galili U, Korash A, Kahane I, Rachmilewitz EA (1983)Blood 61:1258–64.

    Google Scholar 

  73. Kolb H, Schudt C, Kolb-Bachofen V, Kolb HA (1978)Exp Cell Res 113:319–25.

    Google Scholar 

  74. Kolb H, Kolb-Bachofen V, Schlepper-Schäfer J (1979)Biol. Cell 36:301–8.

    Google Scholar 

  75. Kolb H, Vogt D, Herbertz L, Corfield AP, Schauer R, Schlepper-Schäfer J (1980)Hoppe Seyler's Z Physiol Chem 361:1747–50.

    Google Scholar 

  76. Schlepper-Schäfer J, Kolb-Bachofen V, Kolb H (1980)Biochem J 186:827–31.

    Google Scholar 

  77. Küster JM, Schauer R (1981)Hoppe Seyler's Z Physiol Chem 362:1507–14.

    Google Scholar 

  78. Gattegno L, Saffar L, Vaysse J (1988)Med Sci Res 16:1081–82.

    Google Scholar 

  79. Bennett GD, Kay MMB (1981)Exp Hematol 9:297–307.

    Google Scholar 

  80. Galili U, Korkesh A, Kahane I, Rachmilewitz EA (1983)Blood 61:1258–64.

    Google Scholar 

  81. Lutz H, Stringaro-Wipf G (1984)Biomed Biochim Acta 425:117–21.

    Google Scholar 

  82. Galili U, Flechner E, Knyszynki A, Danon D, Rachmilewitz EA (1986)Br J Haematol 32:317–24.

    Google Scholar 

  83. Gattegno L, Prigent MJ, Saffar L, Bladier D, Vaysse J, Lefloch A (1986)Glycoconjugate J 3:379–89.

    Google Scholar 

  84. Gattegno L, Saffar L, Vaysse L (1989)J Leukoc Biol 45:422–28.

    Google Scholar 

  85. Sheiban E, Gershon H (1993)J Lab Clin Med 121:493–501.

    Google Scholar 

  86. Gattegno L, Bladier D, Vaysse J, Saffar L (1991) InRed Blood Cell Aging (Magnani M, De Flora A, eds) pp. 329–337. New York: Plenum Press.

    Google Scholar 

  87. Bocci V, Pessina GP, Paulesu L (1981)Int J Biochem 13:1257–60.

    Google Scholar 

  88. Bosmann H D (1974)Vox Sang 26:497–512.

    Google Scholar 

  89. Chiarini A, Fiorilli A, Di Francesco L, Venerando B, Tettamanti G (1993)Glycoconjugate J 10:64–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bratosin, D., Mazurier, J., Debray, H. et al. Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span. Glycoconjugate J 12, 258–267 (1995). https://doi.org/10.1007/BF00731328

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731328

Keywords

Navigation