Skip to main content
Log in

Advances in numerical modeling of astrophysical and space plasmas

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Plasma science is rich in distinguishable scales ranging from the atomic to the galactic to the meta-galactic, i.e., themesoscale. Thus plasma science has an important contribution to make in understanding the connection between microscopic and macroscopic phenomena. Plasma is a system composed of a large number of particles which interact primarily, but not exclusively, through the electromagnetic field. The problem of understanding the linkages and couplings in multi-scale processes is a frontier problem of modern science involving fields as diverse as plasma phenomena in the laboratory to galactic dynamics.

Unlike the first three states of matter, plasma, often called the fourth state of matter, involves the mesoscale and its interdisciplinary founding have drawn upon various subfields of physics including engineering, astronomy, and chemistry. Basic plasma research is now posed to provide, with major developments in instrumentation and large-scale computational resources, fundamental insights into the properties of matter on scales ranging from the atomic to the galactic. In all cases, these are treated as mesoscale systems. Thus, basic plasma research, when applied to the study of astrophysical and space plasmas, recognizes that the behavior of the near-earth plasma environment may depend to some extent on the behavior of the stellar plasma, that may in turn be governed by galactic plasmas. However, unlike laboratory plasmas, astrophysical plasmas will forever be inaccessible to in situ observation. The inability to test concepts and theories of large-scale plasmas leaves only virtual testing as a means to understand the universe. Advances in in computer technology and the capability of performing physics first principles, fully three-dimensional, particle-in-cell simulations, are making virtual testing a viable alternative to verify our predictions about the far universe.

The first part of this paper explores the dynamical and fluid properties of the plasma state, plasma kinetics, and the radiation emitted from plasmas. The second part of this paper outlines the formulation for the particle-in-cell simulation of astrophysical plasmas and advances in simulational techniques and algorithms, as-well-as the advances that may be expected as the computational resource grows to petaflop speed/memory capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfvén, H., Carlqvist, P.: 1978,Astrophys. Space Sci. Vol. no. 55, 484

    Google Scholar 

  • Alfvén, H., Herlofson, N.: 1950,Phys. Rev. Vol. no. 78, 616

    Google Scholar 

  • Alfvén, H. and Fälthammar, C.-G.: 1963,Cosmical Electrodynamics, Oxford University Press, New York

    Google Scholar 

  • Akasofu, A.-I.: 1981, “Energy coupling between the solar wind and the magnetosphere”,Space Sci. Rev. Vol. no. 28, p. 21

    Google Scholar 

  • Bennett, W. H.: 1934, “Magnetically self-focusing streams”,Phys. Rev. Vol. no. 45, 890

    Google Scholar 

  • Birdsall, C. K., Langdon, A. B.: 1985,Plasma Physics via Computer Simulation, McGraw-Hill, New York

    Google Scholar 

  • Biskamp, D.: 1997, “Magnetic Reconnection in Plasmas”,Astrophys. Space Sci., This issue

  • Bogdankevich, L. S., Rukhadze, A. A.: 1971, “Sov. Phys. Usp”,Sov. Phys. Usp. Vol. no. 14, 163

    Google Scholar 

  • Bostick, W. H.: 1986, “What laboratory produced plasma structures can contribute to the understanding of cosmic structures both large and small”,IEEE Trans. Plasma Sci. Vol. no. 14, 703

    Google Scholar 

  • Brackbill, J.: 1987, “Fundamentals of Numerical Magnetohydrodynamics, International School for Space Simulation, La londe les Maures, France, 1987”,Los Alamos National Laboratory Report, LA-UR-87-2052.

  • Buneman, O.: 1976, “The advance from 2D electrostatic to 3D electromagnetic particle simulations”,Computer Phys. Comm. Vol. no. 12, pp. 21–31

    Google Scholar 

  • Buneman, O., Barnes, C. W., Green, J. C., Nielsen, D. E.: 1980, “Principles and capabilities of 3D, EM particle simulations”,J. Comp. Phys. Vol. no. 38, 1

    Google Scholar 

  • Buneman, O.: 1986, “Multidimensional particle codes: their capabilities and limitations for modeling space and laboratory plasma”,IEEE Trans. Plasma Sci. Vol. 14, 661

    Google Scholar 

  • Carlqvist, P.: 1988, “Cosmic electric currents and the generalized Bennett Relation”,Astrophys. Space Sci. Vol. no. 144, 73

    Google Scholar 

  • Chen, F. F.: 1984,Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New York

    Google Scholar 

  • Dawson, J. M., Decyk, V., Sydora, R., Liewer, P.: 1993, “High-performance computing and plasma physics”,Phys. Today., March

  • Eastman, T.: 1990, “Transition regions in solar system and astrophysical plasmas”,IEEE Trans. Plasma Sci. Vol. no. 18, p 18.

    Google Scholar 

  • Frank, I., Ginsburg, V.: 1945, “Radiation of a uniformly moving electron due it its transition from one medium into another”,Journal of Phys. Vol. no. IX, pp. 353–362

    Google Scholar 

  • Gouveia Dal Pino, E. M., Opher, R.: 1989, “The origin of filaments in extended radio sources”,Astrophys. J. Vol. no. 342, pp. 686–699

    Google Scholar 

  • Lindberg, L.: 1970,Astrophys. Space Sci. Vol. no. 55, 203

    Google Scholar 

  • Hammer, D. A., Rostocker, N.: 1970,Phys. Fluids Vol. no. 13, 1831

    Google Scholar 

  • Happek, U., Sievers, A. J., Blum, E. B.: 1992, “Observation of coherent transition radiation”,Phys. Rev. Lett

  • Hockney, R. W., Eastwood, J. W.: 1981,Computer Simulation Using Particles, McGraw-Hill, New York

    Google Scholar 

  • Jones, M. E., Peter, W. K.: 1985,IEEE Trans. Nucl. Sci. Vol. no. NS-32, p. 1794.

    Google Scholar 

  • Jones M. E., D. S. Lemons, R. J. Mason, V. A. Thomas, & D. Winske: 1996, “A Grid-Based Coulomb Collision Model for PIC Codes”,J. Comput. Phys. Vol. no. 123, in press.

  • Jones, M. E., D. Winske, S. R. Goldman, R. A. Kopp, V. G. Rogatchev, S. A. Bel'kov, P. D. Gasparyan, G. V. Dolgoleva, N. V. Zhidkov, N. V. Ivanov, Yu. K Kochubej, G. F. Nasyrov, V. A. Pavlovskii, V. V. Smirnov, and Yu. A. Romanov: 1996, “An Adiabatic Fluid Electron Particle-in-Cell Code for Simulating Ion-Driven Parametric Instabilities”,Phys. Plasmas Vol. no. 3, pp. 1096–1108.

    Google Scholar 

  • Jones, M. E.: 1995, “Multi-Level Concurrent Simulation: A White Paper”,unpublished

  • Küppers, G., Salat, A., Wimmel, H. K.: 1973, “Macroscopic equilibria of relativistic electron beams in plasmas”,Plasma Phys. Vol. no. 15, 441

    Google Scholar 

  • Melrose, D. B.: 1997, “Particle Acceleration and Nonthermal Radiation in Space Plasmas”,Astrophys. Space Sci., This issue

  • Miller, R. H., Combi, M. R.: 1995,Geophys. Res. Lett. Vol. no. 21, 1735

    Google Scholar 

  • Nahin, P. J.: 1988,Oliver Heaviside: Sage in Solitude, IEEE Press, New York

    Google Scholar 

  • Peratt, A. L.: 1992,Physics of the Plasma Universe, Springer-Verlag, New York

    Google Scholar 

  • Thomas, V.: 1995, “Multi-Level Concurrent Simulation”,Los Alamos National Laboratory Report LA-UR-95-3454

  • Trubnikov, B. A.: 1958, “Plasma radiation in a magnetic field”,Sov. Phys. ‘Doklady’ Vol. no. 3, 136

    Google Scholar 

  • Vu, H. X.: 1996, “An Adiabatic Fluid Electron Particle-in-Cell Code for Simulating Ion-Driven Parametric Instabilities”,J. Comput. Phys. Vol. no. 123, in press.

  • Witalis, E.: 1981,Phys. Rev. A Vol. no. 24, 2758

    Google Scholar 

  • Yonas, G., Poukey, J. W., Prestwich, K. R., Freeman, J. R., Toepfer, A. J., Clauser, J. J.: 1993,Nucl. Fusion Vol. no. 14, 731

    Google Scholar 

  • Zimmerman, G. B., Kruer, W. L.: 1975,Comments Plasma Phys. Vol. no. 2, p. 51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memories of Hannes Alfvén and Oscar Buneman; Founders of the Subject.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peratt, A.L. Advances in numerical modeling of astrophysical and space plasmas. Astrophys Space Sci 242, 93–163 (1996). https://doi.org/10.1007/BF00645112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645112

Key words

Navigation