Skip to main content
Log in

Twinning in ferroelectric and ferroelastic ceramics: stress relief

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The regular twinning in ceramics and metals below the temperature of a ferroelastic or ferroelectric structural phase transition is a result of energy minimization. Here homogeneous elastic energy is reduced at the expense of twin wall energy. The twin density depends on the gram sizeg; under homogeneous stress the total elastic energy of a grain increases ∝g 3. Any kind of twin wall, however, increases ∝g 2. Below the intersection of these two curves, stress reduction by twinning cannot lower the total energy. Thus there is a critical grain size below which twinning should not occur. Above this limit the width of the twin lamellae increases ∝g 1/2. The shape of the grain then adjusts to the surroundings in two dimensions only. Above another larger critical grain size more complex interfaces with higher surface energy are created, which allow stress relief in the third dimension. A semi-quantitative model is developed with the example of BaTiO3 ceramic, of which the domain patterns are well known. It is representative for many ceramics. The highT c superconductor YBa2Cu3O7−δ also twins according to the same law. For three-dimensional adjustment here a proper interface is missing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Cahn,Adv. Phys. 3 (1954) 363.

    Google Scholar 

  2. J. W. Christian, in “The Mechanism of Phase Transformations in Crystalline Solids”, Monograph and Report Series Vol. 33 (Institute of Metals London, 1969) p. 129.

    Google Scholar 

  3. C. M. Waymann, in “Diffraction and Imaging” Technique in Materials Science edited by S. Amelinckx, R. Gevers and I. van Landuyt (North Holland, 1978) pp. 251ff.

  4. A. Johnson, “Neues Jahrbuch Mineralogie”, Beilage-band39 (1914) p. 500.

    Google Scholar 

  5. K. Aizu.J. Phys. Soc. Jpn 27 (1969) 387.

    Google Scholar 

  6. Idem, ibid. 32 (1971) 1959.

    Google Scholar 

  7. L. S. Fomenko, S. V. Lubenets andV. I. Startsev Scripta Metall. 18 (1984) 535.

    Google Scholar 

  8. H. M. O'Bryan andP. K. Gallagher,Adv. Ceram. Mater. 2 (1987) 640.

    Google Scholar 

  9. T. J. Kistenmacher,J. Appl. Phys. 64 (1988) 5067.

    Google Scholar 

  10. C. Willaime andM. Gandais,Phys. Status Solidi (a) 9 (1972) 529.

    Google Scholar 

  11. C. Willaime, W. L. Brown andM. Gandais, in “Electron Microscopy”, edited by H.-R. Wenk (Springer, Berlin 1976) Ch. 4.9.

    Google Scholar 

  12. P. E. Champness andG. W. Lorimer,ibid.“ Ch. 4.1.

    Google Scholar 

  13. G. Arlt andP. Sasko,J. Appl. Phys. 51 (1980) 4956.

    Google Scholar 

  14. G. Arlt, D. Hennings andG. deWith,ibid. 58 (1985) 1619.

    Google Scholar 

  15. J. D. Eshelby, in “Progress in Solid Mechanics” Vol. 2 (North-Holland, Amsterdam, 1961) pp. 89–140.

    Google Scholar 

  16. G. Arlt, H. Dederichs andR. Herbiet,Ferroelectrics 74 (1987) 37.

    Google Scholar 

  17. O. M. Zhang et al., J. Appl. Phys. 64 (1988) 6445.

    Google Scholar 

  18. P. T. Worrell,ibid. 19 (1948) 927.

    Google Scholar 

  19. C. Zener, “Elasticity and Anelasticity in Metals”, (University Press, Chicago, 1948) p. 159.

    Google Scholar 

  20. J. W. Christian,Metall. Trans. A. 13A (1982) 509.

    Google Scholar 

  21. V. A. Zhirnov,Sov. Phys. JETP 35 (1959) 822.

    Google Scholar 

  22. L. N. Bulaewski,Sov. Phys. Sol. State 5 (1964) 2329.

    Google Scholar 

  23. C. Kittel,Sol. State Commun. 10 (1972) 119.

    Google Scholar 

  24. M. Distelhorst, R. Hofmann andH. Beige,Jap. J. Appl. Phys. 24 (1985) Suppl.24-2 (1985) 1019.

    Google Scholar 

  25. J. F. Smith andD. Wohlleben,Z. Phys. B Cond. Matt. 72 (1988) 323.

    Google Scholar 

  26. G. v. Tendeloo, H. W. Zandbergen andS. Amelinckx,Sol. State Commun. 63 (1987) 603.

    Google Scholar 

  27. M. Tanaka andG. Honjo,J. Phys. Soc. Jpn 19 (1964) 954.

    Google Scholar 

  28. T. Malis andH. Gleiter,J. Appl. Phys. 47 (1976) 5195.

    Google Scholar 

  29. Y. J. Chang.Appl. Phys. A29 (1982) 237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arlt, G. Twinning in ferroelectric and ferroelastic ceramics: stress relief. J Mater Sci 25, 2655–2666 (1990). https://doi.org/10.1007/BF00584864

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584864

Keywords

Navigation