Skip to main content
Log in

Somatosensory and hypothalamic inhibitions of baroreflex vagal bradycardia in rats

  • Heart, Circulation, Respiration and Blood; Environmental and Exercise Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Somatosensory and forebrain mechanisms inhibiting arterial baroreflexes were investigated in chloraloseurethane anesthetized and artificially ventilated rats. Electrical stimulation of the sciatic nerve (ScN) and the hypothalamic pressor area (HP) suppressed baroreflex vagal bradycardia (BVB) and hypotension provoked by electrical stimulation of the aortic depressor nerve (ADN). Suppression of BVB was more marked, but inhibitory potencies of ScN and HP were not different. These two inhibitions were considered to have a functional implication in common, since both were accompanied by increase in hindlimb vascular conductance. A variety of experiments were conducted to localize the target site of ScN and HP inhibitions of BVB. Either ScN or HP stimulations was without effect on antidromic compound spike potentials along ADN evoked by microstimulation of the nucleus tractus solitarius (NTS), precluding the possibility of these inhibitions being presynaptic. Both ScN and HP stimulation suppressed ADN-induced field potentials in the NA region which provoked vagal bradycardia upon microstimulation, but failed to affect ADN-induced responses, either field or unitary, in the NTS region. Antidromic unitary responses in the NA region to vagus cardiac branch stimulation were suppressed by ScN and HP stimulations in NTS-lesioned rats. Intracisternal bicuculline, a GABA antagonist, was found to abolish both ScN and HP inhibitions of BVB, while intracisternal muscimol, a GABA agonist, eliminated bradycardia. These findings suggest that somatosensory and forebrain inhibitions of BVB occur principally at the preganglionic cell level and are probably mediated by a GABAergic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett JA, McWilliam PN, Shepheard SL (1987) A γ-aminobutyric acid-mediated inhibition of neurones in the nucleus tractus solitarius of the cat. J Physiol (Lond) 392:417–430

    CAS  Google Scholar 

  2. Blessing WW, Willoughby JO (1987) Depressor neurons in rabbit caudal medulla do not transmit the baroreceptor-vasomotor reflex. Am J Physiol 253:H777–H786

    CAS  PubMed  Google Scholar 

  3. Bousquet P, Feldman J, Bloch R, Schwartz J (1982) Evidence for a neuromodulatory role of GABA at the first synapse of the baroreceptor reflex pathway. Effect of GABA derivatives injected into the NTS. Naunyn-Schmiedeberg's Arch Pharmacol 319:168–171

    Article  CAS  Google Scholar 

  4. Ciriello J, Calaresu FR (1980) Distribution of vagal cardio-inhibitory neurons in the medulla of the cat. Am J Physiol 238:R57–R64

    CAS  PubMed  Google Scholar 

  5. Coote JH, Hilton SM, Perez-Gonzalez JH (1979) Inhibition of the baroreceptor reflex on stimulation in the brain stem defence centre. J Physiol (Lond) 288:549–560

    CAS  Google Scholar 

  6. DiMicco JA, Gale K, Hamilto B, Gillis RA (1979) GABA receptor control of parasympathetic outflow to heart: Characterization and brainstem localization. Science 204:1106–1109

    Article  CAS  PubMed  Google Scholar 

  7. Djojosugito GL, Folkow B, Kylstra PH, Lisander B, Tuttle RS (1970) Differentiated interaction between the hypothalamic defence reaction and baroreceptor reflexes. I. Effects on heart rate and regional flow resistance. Acta Physiol Scand 78:376–385

    Article  CAS  PubMed  Google Scholar 

  8. Donald DE, Edis AJ (1971) Comparison of aortic and carotid baroreflexes in the dog. J Physiol (Lond) 215:521–538

    CAS  Google Scholar 

  9. Gebber GL, Klevans LR (1972) Central nervous system modulation of cardiovascular reflexes. Fed Proc 31:1245–1252

    CAS  PubMed  Google Scholar 

  10. Gebber GL, Snyder DW (1969) Hypothalamic control of baroreceptor reflexes. Am J Physiol 218:124–131

    Google Scholar 

  11. Geis GS, Wurster RD (1980) Horseradish peroxidase localization of cardiac vagal preganglionic somata. Brain Res 182:19–30

    Article  CAS  PubMed  Google Scholar 

  12. Hilton SM (1963) Inhibition of baroreceptor reflexes on hypothalamic stimulation. J Physiol (Lond) 165:56P

  13. Hopkins DA, Armour JA (1982) Medullary cells of origin of physiologically identified cardiac nerves in the dog. Brain Res Bull 8:359–365

    Article  CAS  PubMed  Google Scholar 

  14. Humphrey PW, Joels N, McAllen RM (1971) Modification of the reflex response to stimulation of carotid sinus baroreceptors during and following stimulation of the hypothalamic defence area in the cat. J Physiol (Lond) 216:461–482

    Google Scholar 

  15. Iriuchijima J, Kumada M (1964) Activity of single vagal fibers efferent to the heart. Jpn J Physiol 14:479–487

    CAS  PubMed  Google Scholar 

  16. Iriuchijima J, Kawaue K, Teranishi T (1982) Blood flow redistribution in the transposition response of the rat. Jpn J Physiol 32:807–816

    CAS  PubMed  Google Scholar 

  17. Jordan D, Spyer KM (1979) Studies on the excitability of sinus nerve afferent terminals. J Physiol (Lond) 297:123–134

    CAS  Google Scholar 

  18. Jordan D, Mifflin SW, Spyer KM (1988) Hypothalamic inhibition of neurones in the nucleus tractus solitarius of the cat is GABA-mediated. J Physiol (Lond) 399:389–404

    CAS  Google Scholar 

  19. Kalia M, Mesulam M-M (1980) Brain stem projections of sensory and motor components of the vagus complex in the cat. II. Laryngeal, tracheobroncheal, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 193:467–508

    Article  CAS  PubMed  Google Scholar 

  20. Keeler JR, Schults CW, Chase TN, Helke CJ (1984) The ventral surface of the medulla in the rat: Pharmacologic and radiographic localization of GABA-induced cardiovascular effects. Brain Res 297:217–224

    Article  CAS  PubMed  Google Scholar 

  21. Kumada M, Nogami K, Sagawa K (1975) Modulation of carotid sinus baroreceptor reflex by sciatic nerve stimulation. Am J Physiol 238:1535–1541

    Google Scholar 

  22. Kumada M, Schramm LP, Altmansberger RA, Sagawa K (1975) Modulation of carotid sinus baroreceptor reflex by hypothalamic defense response. Am J Physiol 228:35–45

    Google Scholar 

  23. Mifflin SW, Spyer KM, Withington-Wray DJ (1988) Baroreceptor input to the nucleus tractus solitarius in the cat: Modulation by the hypothalamus. J Physiol (Lond) 399:369–387

    CAS  Google Scholar 

  24. Nosaka S, Yamamoto T, Yasunaga K (1979) Localization of vagal cardioinhibitory preganglionic neurons within rat brain stem. J Comp Neurol 186:79–92

    Article  CAS  PubMed  Google Scholar 

  25. Nosaka S, Yasunaga K, Kawano M (1979) Vagus cardio-inhibitory fibers in rats. Pflügers Arch 379:281–285

    Article  CAS  PubMed  Google Scholar 

  26. Nosaka S, Yasunaga K, Tamai S (1982) Vagal cardiac preganglionic neurons: Distribution, cell types and reflex discharges. Am J Physiol 243:R92–R98

    CAS  PubMed  Google Scholar 

  27. Potter EK, McCloskey DI (1982) Inhibition of carotid baroreceptor and chemoreceptor reflexes by brief sciatic nerve stimulation. J Auton Nerv Syst 6:391–394

    Article  CAS  PubMed  Google Scholar 

  28. Quest JA, Gebber GL (1972) Modulation of baroreceptor reflexes by somatic afferent nerve stimulation. Am J Physiol 222:1251–1259

    CAS  PubMed  Google Scholar 

  29. Ross CA, Ruggiero DA, Reis DJ (1985) Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242:511–534

    Article  CAS  PubMed  Google Scholar 

  30. Thomas MR, Calaresu FR (1974) Medullary sites involved in hypothalamic inhibition of reflex bradycardia in the cat. Brain Res 80:1–16

    Article  CAS  PubMed  Google Scholar 

  31. Ulmar HV (1969) Der Einfluß elektrischer Reizung des N. ischiadicus auf den Verlauf der Carotissinus-Aortendruck-Kennlinie des Hundes. Z Biol 119:235–240

    Google Scholar 

  32. Vatner SF, Franklin D, Citters RL, Braunwald E (1970) Effects of carotid sinus nerve stimulation on blood flow distribution in conscious dogs at rest and during exercise. Circ Res 27:495–503

    CAS  PubMed  Google Scholar 

  33. Wall PD (1958) Excitability changes in afferent fibre terminals and their relation to slow potentials. J Physiol (Lond) 142:1–21

    CAS  Google Scholar 

  34. Wang Q, Guo X-Q, Li P (1987) The inhibitory effects of somatic inputs on the excitatory responses of vagal cardiomotor neurones to stimulation of the nucleus tractus solitarius. Brain Res 439:350–353

    Article  Google Scholar 

  35. Weiss GK, Crill WE (1969) Carotid sinus nerve: Primary afferent depolarization evoked by hypothalamic stimulation. Brain Res 16:269–272

    Article  CAS  PubMed  Google Scholar 

  36. Willette RN, Krieger AJ, Barcas PP, Sapru HN (1983) Medullary γ-aminobutyric acid (GABA) receptors and the regulation of blood pressure in the rat. J Pharmacol Exp Ther 226:893–899

    CAS  PubMed  Google Scholar 

  37. Yamada KA, Norman WP, Hamosh P, Gillis RA (1982) Medullary ventral surface GABA receptors affect respiratory and cardiovascular function. Brain Res 248:71–78

    Article  CAS  PubMed  Google Scholar 

  38. Yamada KA, McAllen RM, Loewy AD (1984) GABA antagonists applied to the ventral surface of the medulla oblongata block the baroreceptor reflex. Brain Res 297:175–180

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosaka, S., Nakase, N. & Murata, K. Somatosensory and hypothalamic inhibitions of baroreflex vagal bradycardia in rats. Pflugers Arch. 413, 656 (1989). https://doi.org/10.1007/BF00581817

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF00581817

Key words

Navigation