Skip to main content
Log in

Shifts in carbon isotope ratios of two C3 halophytes under natural and artificial conditions

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The total carbon δ13C values of two C3 halophytes,Salicornia europaea L. ssp.rubra (Nels.) Breitung andPuccinellia muttalliana (Schultes) Hitch., native to inland saline areas of Alberta, Canada, were determined for plants grown under controlled conditions of supplied NaCl in the nutrient solution, and for plants found growing in the field. Field specimens were collected along line transects which ran from areas of high salinity to areas of low salinity across the pattern of species zonation. The δ13C value of the two species seemed to reflect the water potential of the soil (ψ soilw ) as measured arbitrarily at a depth of 10 cm, becoming less negative as the ψ soilw decreased. Over a linear distance of 5.55 m,S. europaea spp.rubra showed a shift of +5.3‰ as the ψ soilw went from-25x102 kPa to a minimum of-73x102 kPa. ForP. nuttalliana, the δ13C values differed by 3.4‰ over a distance of 7.45 m where the maximum difference in ψ soilw was 12.7x102 kPa. However, δ13C values ofP. nuttalliana only roughly reflected the spatial trends in ψ soilw at the time of collection. In the growth chamber, the δ13C value ofS. europaea ssp.rubra changed by a maximum of +8.0‰ when the solute potential of the nutrient solution (ψ soilw ) was dropped from-0.25x102 kPa to-64.25x102 kPa; while the δ13C value ofP. nuttalliana changed by a maximum of +10.8‰ when the ψ soilw was dropped from-0.25x102 kPa to-40.25x102 kPa. Linear regression analyses indicated that the δ13C values of both species were strongly correlated (P<0.2%) with ψ soilw . The observed shifts in δ12C may represent changes in the mode of photosynthetic CO2 fixation. However, a number of other explanations, some of which are discussed in the text, are also possible. A proper ecophysiological interpretation of such shifts in δ13C values of C3 plants awaits a better understanding of the isotope fractionation mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender, M.M.: Variations in the13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry10, 1239–1244 (1971)

    Google Scholar 

  • Bender, M.M., Rouhani, I., Vines, H.M., Black, C.C.:13C/12C ratio changes in Crassulacean acid metabolism plants. Plant Physiol.53, 427–430 (1973)

    Google Scholar 

  • Benedict, C.R.: The fractionation of stable carbon isotopes in photosynthesis. What's New? Plant Physiol.9, 13–16 (1978)

    Google Scholar 

  • Berry, J.A., Troughton, J.H.: Carbon isotope fractionation by C3 and C4 plants in “closed” and “open” atmospheres. Carnegie Inst. Wash. Year Book73, 785–790 (1974)

    Google Scholar 

  • Berry, J., Troughton, J.H., Björkman, O.: Effect of oxygen concentration during growth on carbon isotope discrimination in C3 and C4 species ofAtriplex. Carnegie Inst. Wash. Year Book71, 158–161 (1972)

    Google Scholar 

  • Bloom, A.J.: Salt requirement for Crassulacean acid metabolism in the annual succulent,Mesembrynthemum crystallinum. Plant Physiol.63, 749–754 (1979)

    Google Scholar 

  • Card, K.A., Mahall, B., Troughton, J.H.: Salinity and carbon isotope ratios in C3 and C4 plants. Carnegie Inst. Wash. Year Book73, 784–785 (1974)

    Google Scholar 

  • De Jong, T.M.: Comparative gas exchange and growth responses of C3 and C4 beach species grown at different salinities. Oecolgia (Berl.)36, 59–68 (1978)

    Google Scholar 

  • Dodd, J.D., Coupland, R.T.: Vegetation of saline areas in Saskatchewan. Ecology47, 958–968 (1966)

    Google Scholar 

  • Downton, W.J.S.: Photosynthesis in salt-stressed grapevines. Aust. J. Plant Physiol.4, 183–192 (1977)

    Google Scholar 

  • Eickmeier, W.G., Bender, M.M.: Carbon isotope ratios of Crassulacean acid metabolism species in relation to climate and phytosociology. Oecologia (Berl.)25, 341–347 (1976)

    Google Scholar 

  • Ferron, F., Coudret, A., Gaudillere, J.-P.: Effect de la salinité du milieu de culture sur les voies de carboxylation d'une halophyte (Plantago maritima L. var.graminaea) et d'une glycophyte (Plantago lanceolata L.). C.R. Acad. Sc. Paris285, 323–326 (1977)

    Google Scholar 

  • Flowers, T.J., Troke, P.F., Yeo, A.R.: The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol.28, 89–121 (1977)

    Google Scholar 

  • Gale, J., Kohl, H.C., Hagan, R.M.: Changes in the water balance and photosynthesis of onion, bean and cotton plants under saline conditions. Physiol. Plant.20, 408–420 (1967)

    Google Scholar 

  • Gale, J., Poljakoff-Mayber, A.: Interrelations between growth and photosynthesis of salt bush (Atriplex halimus L.) grown in saline media. Aust. J. Biol. Sci.23, 937–945 (1970)

    Google Scholar 

  • Ganzmann, R.J., von Willert, D.J.: Nachweis eines diurnalen Säurerhythmus beim HalophytenAster tripolium. Naturwissenschaften59, 422–423 (1973)

    Google Scholar 

  • Hatch, M.D., Slack, C.R.: Photosynthetic CO2-fixation pathways. Ann. Rev. Plant Physiol.21, 141–162 (1970)

    Google Scholar 

  • Hoagland, D.R., Arnon, D.I.: The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ.347, 1–32 (1950)

    Google Scholar 

  • Joshi, G., Dolan, T., Gee, R., Saltman, P.: Sodium chloride effect on dark fixation of CO2 by marine and terrestrial plants. Plant Physiol.37, 446–449 (1962)

    Google Scholar 

  • Keith, L.B.: Some effects of increasing soil salinity on plant communities. Can. J. Bot.36, 79–89 (1958)

    Google Scholar 

  • Lerman, J.C.: How to, interpret variations in the carbon isotope ratio of plants: Biologic and environmental effects. In: Environmental and biological control of photosynthesis, R. Marcelle, ed., pp. 323–326. The Hague: Junk 1975

    Google Scholar 

  • Lerman, J.C., Deleens, E., Nato, A., Moyse, A.: Variation in the carbon isotope composition of a plant with Crassulacean acid metabolism. Plant Physiol.53, 581–584 (1974)

    Google Scholar 

  • Lerman, J.C., Queiroz, O.: Carbon fixation and isotope discrimination by a Crassulacean plant: Dependence on the photoperiod. Science183, 1207–1209 (1974)

    Google Scholar 

  • Longstreth, D.J., Nobel, P.S.: Salinity effects on leaf anatomy. Consequences for photosynthesis. Plant Physiol.63, 700–703 (1979)

    Google Scholar 

  • Longstreth, D.J., Strain, B.R.: Effects of salinity and illumination on photosynthesis and water balance ofSpartina alterniflora Loisel. Oecologia (Berl.)32, 191–199 (1977)

    Google Scholar 

  • Maier, M., Kappen, L.: Cellular compartmentalization of salt ions and protective agents with respect to freezing tolerance of leaves. Oecologia (Berl.)38, 303–316 (1979)

    Google Scholar 

  • Osmond, C.B.: Environmental control of photosynthetic options in Crassulacean plants. In: Environmental and biological control of photosynthesis, R. Marcelle, ed.. pp. 311–322. The Hague: Junk 1975

    Google Scholar 

  • Osmond, C.B., Allaway, W.G., Sutton, B.G., Troughton, J.H., Queiroz, O., Lüttge, U., Winter, K.: Carbon isotope discrimination in photosynthesis of CAM plants. Nature246, 41–42 (1973)

    Google Scholar 

  • Osmond, C.B., Ziegler, H., Stichler, W., Trimborn, P.: Carbon isotope discrimination in alpine succulent plants supposed to be capable of Crassulacean acid metabolism (CAM). Oecologia (Berl.)18, 209–217 (1975)

    Google Scholar 

  • Park, R., Epstein, S.: Carbon isotope fractionation during photosynthesis. Geochim. Cosmochim. Acta21, 110–126 (1960)

    Google Scholar 

  • Passera, C., Albuzio, A.: Effect of salinity on photosynthesis and photorespiration of two wheat species (Triticum durum cv. Pepe 2122 andTriticum aestivum cv. Marzotto). Can J. Bot.56, 121–126 (1978)

    Google Scholar 

  • Rundel, P.W., Rundel, J.A., Ziegler, H., Strichler, W.: Carbon isotope ratios of central Mexican Crassulaceae in natural and greenhouse environments. Oecologia (Berl.)38, 45–50 (1979)

    Google Scholar 

  • Shomer-Ilan, A., Nissembaum, A., Galun, M., Waisel, Y.: Effect of water regime on carbon isotope composition of lichens. Plant Physiol.63, 201–205 (1979)

    Google Scholar 

  • Shomer-Ilan, A., Waisel, Y.: The effect of sodium chloride on the balance between the C3 and C4-carbon fixation pathways. Physiol. Plant.29, 190–193 (1973)

    Google Scholar 

  • Smith, B.N.: Natural abundance of the stable isotopes of carbon in biological systems. Bioscience22, 226–231 (1972)

    Google Scholar 

  • Smith, B.N., Brown, W.V.: The Kranz syndrome in the Gramineae as indicated by carbon isotopic ratios. Am. J. Bot.60, 505–513 (1973)

    Google Scholar 

  • Smith, B.N., Epstein, S.: Biogeochemistry of the stable isotopes of hydrogen and carbon in salt marsh biota. Plant Physiol.46, 738–742 (1970)

    Google Scholar 

  • Smith, B.N., Epstein, S.: Two categories of13C/12C ratios for higher plants. Plant Physiol.47, 380–384 (1971)

    Google Scholar 

  • Smith, B.N., Herath H.M.W., Chase, J.B.: Effect of growth temperature on carbon isotope ratios in barley, pea and rape. Plant Cell Physiol.14, 177–182 (1973)

    Google Scholar 

  • Smith, B.N., Jacobson, B.S.:2H/1H and13C/12C ratios for classes of compounds isolated from potato tuber. Plant Cell Physiol.17, 1089–1092 (1976)

    Google Scholar 

  • Smith, B.N., Oliver, J., McMillan, C.: Influence of carbon source, oxygen concentrations, light intensity, and temperature on13C/12C ratios in plant tissues. Bot. Gaz.137, 99–104 (1976)

    Google Scholar 

  • Szarek, S.R., Ting, I.P.: Photosynthetic efficiency of CAM plants in relation to C3 and C4 plants. In: Environmental and biological control of photosynthesis, R. Marcelle, ed., pp. 289–297. The Hague: Junk 1975

    Google Scholar 

  • Szarek, S.R., Troughton, J.H.: Carbon isotope ratios in Crassulacean acid metabolism plants. Seasonal patterns from plants in natural stands. Plant. Physiol.58, 367–370 (1976)

    Google Scholar 

  • Tiku, B.L.: Effect of salinity on the photosynthesis of the halophyteSalicornia rubra andDistichlis stricta. Physiol. Plant.37, 23–28 (1976)

    Google Scholar 

  • Treichel, S.P., Kirst, G.O., von Willert, D.J.: Veränderung der Aktivität der Phosphoenolpyruvat-Carboxylase durch NaCl bei Halophyten verschiedener Biotope. Z. Pflanzenphysiol.71, 437–449 (1974)

    Google Scholar 

  • Troughton, J.H.: Aspects of the evolution of the photosynthetic carboxylation reaction in plants. In: Photosynthesis and photorespiration. M.D. Hatch, C.B. Osmond, R.O. Slatyer, eds., pp. 124–129. New York-London-Sydney-Toronto: Wiley 1971

    Google Scholar 

  • Troughton, J.H., Card, K.A.: Temperature effects on the carbon-isotopic ratio of C3, C4 and Crassulacean-acid-metabolism (CAM) plants. Planta (Berl.)123, 185–190 (1975)

    Google Scholar 

  • Valiela, I., Teal, J.M., Deuser, W.G.: The nature of growth forms in the salt marsh grassSpartina alterniflora. Am. Nat.112, 461–470 (1978)

    Google Scholar 

  • Walker, B.H., Coupland, R.T.: Herbaceous wetland vegetation in aspen grove and grassland regions of Saskatchewan. Can. J. Bot.48, 1861–1878 (1970)

    Google Scholar 

  • Webb, K.L., Burley, J.W.A.: Dark fixation of C14O2 by obligate and facultative salt marsh halophytes. Can. J. Bot.43, 281–285 (1965)

    Google Scholar 

  • Whelan, T., Sackett, W.M., Benedict, C.R.: Carbon isotope discrimination in a plant possessing the C4 dicarboxylic acid pathway. Biochem. Biophys. Res. Commun.41, 1205–1210 (1970)

    Google Scholar 

  • Whelan, T., Sackett, W.M., Benedict, C.R.: Enzymatic fractionation of carbon isotopes by phosphoenolpyruvate carboxylase from C4 plants. Plant Physiol.51, 1051–1054 (1973)

    Google Scholar 

  • Winter, K.: Zum Problem der Ausbildung des Crassulaceensäurestoffwechsels beiMesembryanthemum crystallinum unter NaCl-Einfluß. Planta (Berl)109, 135–145 (1973)

    Google Scholar 

  • Winter, K., Lüttge, U.: Balance between C3 and CAM pathway of photosynthesis. In: Water and plant life, O.L. Lange, L. Kappen, E.-D. Schulze, eds., pp. 323–334. Berlin:Springer-Verlag 1976

    Google Scholar 

  • Winter, K., von Willert, D.J. NaCl-induzierter Crassulaceensäurestoffwechsel beiMesembryanthemum crystallinum. Z. Pflanzenphysiol.67, 166–170 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guy, R.D., Reid, D.M. & Krouse, H.R. Shifts in carbon isotope ratios of two C3 halophytes under natural and artificial conditions. Oecologia 44, 241–247 (1980). https://doi.org/10.1007/BF00572686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00572686

Keywords

Navigation