Skip to main content
Log in

Human styrene exposure

V. Development of a model for biological monitoring

  • Original Papers
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Summary

The use of biological indicators to monitor workers' exposure to styrene requires a good understanding of the kinetics of the solvent in the organism. The absorption, distribution and elimination of styrene (STY), as well as the kinetics of formation and excretion of its metabolites (mandelic [MA] and phenylglyoxylic [PGA] acids) are simulated using a mathematical model. The results obtained compare well with experimental data for pulmonary (STY) and urinary (MA and PGA) excretion obtained during controlled human exposures. The model is then used to predict the behaviour of STY, MA and PGA during repeated occupational exposure. It is shown that the results are comparable to the data collected during field surveys in the polyester industry, if the level of physical activity of the workers is taken into account. This latter parameter appears to have a great influence on the urinary excretion of the metabolites. Based on the results obtained, biological limits of exposure are proposed (referenced to a TLV [threshold limit value] of 50 ppm) for MA and MA + PGA excretions in urine collected at the end of the shift (800 and 1000 mg/g creat.) and the next morning (150 and 300 mg/g creat.). Their validity is tested against experimental data obtained under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson LA, Brooks SM, Winner P, Elia V, Carson A, Tsay JY, Buncher R, Emmet EA (1979) Epidemiologic study of styrene workers: III. Biological monitors of exposure to styrene in the reinforced plastics industry. University of Cincinnati, Kettering Laboratories, Cincinnati, OHIO (Annual Report), pp 191–196

    Google Scholar 

  2. Åstrand I, Kilbom Å, Övrum P, Wahlberg I, Vesterberg O (1979) Exposure to styrene: I. Concentration in alveolar air and blood at rest and during exercise and metabolism. Work Environ Health 2:69–85

    Google Scholar 

  3. Bardodej Z (1964) Metabolismus styrenu. Cesk Hygiena 9:223–239

    Google Scholar 

  4. Barbodej Z, Bardodejova E (1968) Biotransformation of ethylbenzene, styrene and alphamethylstyrene in man. Am Ind Hyg Assoc J 29:206–209

    Google Scholar 

  5. Bergman K (1977) Styrenexposition i plastbåtsindustri: I. Teknisk-hygieniste studie. Arbete och Häsle 3:1–10

    Google Scholar 

  6. Brooks SM, Anderson L, Emmet E, Carson A, Tsay JY, Elia V, Buncher R, Karbowsky R (1980) The effects of protective equipment on styrene exposure in workers in the reinforced plastics industry. Arch Environ Health 35:287–294

    Google Scholar 

  7. Caperos JR, Humbert B, Droz PO (1979) Exposition au styrène: II. Bilan de l'absorption, de l'excrétion et du métabolisme sur des sujets humains. Int Arch Occup Environ Health 42:223–230

    Google Scholar 

  8. Caperos JR, Droz PO, Hake CL, Humbert BE, Jacot-Guillarmot A (1982) 1,1,1-trichloroethane exposure, biological monitoring by breath and urine analyses. Int Arch Occup Environ Health 49:293–303

    Google Scholar 

  9. Cotes JE (1975) Lung function, assessment and application in medicine. Third Edition. Blackwell Scientific Publications, London

    Google Scholar 

  10. Crandall MS (1981) Worker exposure to styrene monomer in the reinforced plastic boatmaking industry. Am Ind Hyg Assoc J 42:499–502

    Google Scholar 

  11. Droz PO (1978) Contribution à la recherche d'indices biologiques d'exposition aux solvants: détermination le leur coefficients de partage et étude de leurs comportements dans l'organisme à l'aide de modéles de simulation. Neuchâtel University, Switzerland [Thesis]

    Google Scholar 

  12. Droz PO, Fernandez JG (1977) Solubility of organic solvents: I. Gas chromatographic determination of olive oil-gas partition coefficients. Helv Chim Acta 60:454–458

    Google Scholar 

  13. Droz PO, Fernandez JG (1978) Trichloroethylene exposure. Biological monitoring by breath and urine analyses. Br J Ind Med 35:35–42

    Google Scholar 

  14. Elia VJ, Anderson LA, Macdonald TJ, Carson A, Buncher ER, Brooks SM (1980) Determination of urinary mandelic and phenylglyoxylic acids in styrene exposed workers and a control population. Am Ind Hyg Assoc J 41:922–926

    Google Scholar 

  15. Engström K, Härkrönen H, Kalliokoski P, Rantanen J (1976) Urinary mandelic concentration after occupational exposure to styrene and its use as a biological exposure test. Scand J Work Environ Health 2:21–26

    Google Scholar 

  16. Fernandez JG, Caperos JR (1977) Exposition au styrène: I. Etude expérimentale de l'absorption et de l'excrétion pulmonaire sur des sujets humains. Int Arch Occup Environ Health 40:1–12

    Google Scholar 

  17. Fernandez JG, Droz PO, Humbert JE, Caperos JR (1977) Trichloroethylene exposure: simulation of uptake, excretion and metabolism using a mathematical model. Br J Ind Med 34:43–55

    Google Scholar 

  18. Fiserova-Bergerova U, Vlach J, Singhal K (1974) Simulation and prediction of uptake distribution and extraction of organic solvents. Br J Ind Med 31:45–52

    Google Scholar 

  19. Flick K (1971) Beitrag zur Bestimmung der Styrol-Arbeitsplatzkonzentration bei der Verarbeitung von Polyesterharzen. Arbeitsschutz 2:25–29

    Google Scholar 

  20. Fields RL, Horstman SW (1979) Biomonitoring of industrial styrene exposures. Am Ind Hyg Assoc 40:451–459

    Google Scholar 

  21. Götell P, Axelson O, Lindelöf B (1972) Field studies on human styrene exposure. Work Environ Health 9:76–83

    Google Scholar 

  22. Guberan E, Fernandez J (1979) Control of industrial exposure to tetrachloroethylene by measuring alveolar concentrations: theoretical approach using a mathematical model. Br J Ind Med 31:159–167

    Google Scholar 

  23. Guillemin MP, Bauer D (1978) Biological monitoring of exposure to styrene by analysis of combined urinary mandelic and phenylglyoxylic acids. Am Ind Hyg Assoc 39:873–879

    Google Scholar 

  24. Guillemin MP, Bauer D, Hotz PA, Lob M, Greuter WF (1978) Monitoring of styrene exposure in the polyester industry. Scand J Work Environ Health 4 [Suppl] 2:14–21

    Google Scholar 

  25. Guillemin MP, Bauer D (1979) Human exposure to styrene: III. Elimination kinetics of urinary mandelic and phenylglyoxylic acids after single experimental exposure. Int Arch Occup Environ Health 44:249–263

    Google Scholar 

  26. Guillemin MP, Bauer D (1980) Delayed excretion of urinary metabolites after styrene exposure: fact or artifact? Scand J Work Environ Health 6:158–160 [Letter to the editor]

    Google Scholar 

  27. Guillemin MP, Bauer D, Martin B, Marazzi A (1983) Human exposure to styrene. IV. Air and biological monitoring in polyester workshops. Int Arch Occup Environ Health 51:139–150

    Google Scholar 

  28. Hake CL (1979) Simulation studies of blood carboxyhemoglobine levels associated with inhalation exposure to methylene chloride. Presented at the 18th annual meeting of the Society of Toxicology, New Orleans, LA, March 1979

  29. Härkönen H, Kalliokoski P, Hietala S, Hernberg S (1974) Concentrations of mandelic and phenylglyoxylic acids in urine as indicators of styrene exposure. Work Environ Health 11:162–169

    Google Scholar 

  30. Horiguchi S, Teramoto K, Kiyota I, Endo G (1974) Daily variations in the amounts of mandelic, phenylglyoxylic and hippuric acids excreted in the urine of styrene workers. Jpn J Ind Health 16:228–229

    Google Scholar 

  31. Ikeda M, Imamura T, Hayashi U, Tabuchi T, Hara I (1974) Evaluation of hippuric, phenylglyoxylic and mandelic acids in urine as indices of styrene exposure. Int Arch Occup Environ Health 32:93–101

    Google Scholar 

  32. Madlo Z, Simova M (1980) Determination of phenylglyoxylic acid in urine in exposition to styrene. Prac Lek 32:66–68

    Google Scholar 

  33. Ogata M, Reiko S (1978) High performance liquid chromatographic procedure for quantitative determination of urinary phenylglyoxylic, mandelic and hippuric acids as indices of styrene exposure. Int Arch Occup Environ Health 42:11–19

    Google Scholar 

  34. Ohtsuji H, Ikeda M (1970) A rapid colorimetric method for the determination of phenylglyoxylic and mandelic acids: its application to the urine analyses of workers exposed to styrene vapour. Br J Ind Med 27:150–154

    Google Scholar 

  35. Pfaffli P, Vainio H, Hesso A (1979) Styrene and styrene oxide concentrations in the air during the lamination process in the reinforced plastics industry. Scand J Work Environ Health 5:158–161

    Google Scholar 

  36. Philippe R, Lauwerys R, Buchet JP, Roels H, Defeld JM (1974) Evaluation de (exposition des travailleurs au styrène par le dosage de ses métabolites urinaires: les acides mandélique et phénylglyoxylique: II. Application aux travailleurs fabriquant des polyesters. Arch Mal Prof Hyg Toxicol Ind 35:631–640

    Google Scholar 

  37. Van Rees H (1974) The partition coefficients of styrene between blood and air between oil and blood. Int Arch Arbeitsmed 33:39–47

    Google Scholar 

  38. Schumacher RL, Breysse PA, Carlyon WR, Hibbard RP, Kleinman GD (1981) Styrene exposure in the fiberglass fabrication industry in Washington State. Am Ind Hyg Assoc J 42:143–149

    Google Scholar 

  39. Stewart A, Allott PR, Cowler AL, Mapleson WW (1973) Solubility coefficients for inhaled anaesthethics for water, oil and biological media. Br J Anaesth 45:282–293

    Google Scholar 

  40. Stewart RD, Dodd HC, Baretta ED, Schaeffer AW (1968) Human exposure to styrene vapour. Arch Environ Health 16:656–662

    Google Scholar 

  41. Teramoto K, Horiguchi S (1976) Industrial styrene poisoning: IV. Styrene concentrations in alveolar air and blood of styrene workers and styrene exposed animals. Sangyo Igaku 18:418–419

    Google Scholar 

  42. Tossavainen A (1978) Styrene use and occupational exposure in the plastics industry. Scand J Work Environ Health 4 [Suppl] 2:7–13

    Google Scholar 

  43. Wilson HK, Robertson SM, Walobon HA, Gompertz D (1983) The effect of alcohol on the kinetics of mandelic acid excretion in volunteers exposed to styrene vapour. Br J Ind Med 40:75–80

    Google Scholar 

  44. Wolff MS, Lorimer WV, Lilis R, Selikoff IJ (1978) Blood styrene and urinary metabolites in styrene polymerisation. Br J Ind Med 35:318–329

    Google Scholar 

  45. Zielhuis RL, Verberk MM (1974) Validity of biological tests in epidemiological toxicology. Int Arch Occup Environ Health 32:167–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Droz, P.O., Guillemin, M.P. Human styrene exposure. Int. Arch Occup Environ Heath 53, 19–36 (1983). https://doi.org/10.1007/BF00406174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406174

Key words

Navigation