Skip to main content
Log in

Mechanics of circadian pulvini movements in Phaseolus coccineus L.

Shape and arrangement of motor cells, micellation of motor cell walls, and bulk moduli of extensibility (\(\bar \varepsilon _s \))

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The circadian movement of the lamina of primary leaves of Phaseolus coccineus L. is mediated by antagonistic changes in the length of the extensor and flexor cells of the laminar pulvinus. The cortex of the pulvinus is a concentric structure composed of hexagonal disc-like cells, arranged in longitudinal rows around the central stele. Observations with polarization optics indicate that the cellulose microfibrils are oriented in a hoop-like fashion in the longitudinal walls of the motor cells. This micellation is the structural basis of the anisotropic properties of the cells: tangential sections of the extensor and flexor placed in hypotonic mannitol solutions showed changes only in length. As a consequence a linear correlation between length and volume was found in these sections. Based on the relationship between the water potential (which is changed by different concentrations of mannitol) and the relative volume of the sections and on the osmotic pressure at 50% incipient plasmolysis, osmotic diagrams were constructed for extensor and flexor tissues (cut during night position of the pulvinus). The bulk moduli of extensibility, \(\bar \varepsilon _s \), were estimated from these diagrams. Under physiological conditions the \(\bar \varepsilon _s \) values were rather low (in extensor tissue below 10 bar, in flexor tissue between 10 to 15 bar), indicating a high extensibility of the longitudinal walls of the motor cells. They are strongly dependent on the turgor pressure at the limits of the physiological pressure range.

In well-watered plants, the water potentials of the extensor and flexor tissues were surprisingly low,-12 bar and-8 bar, respectively. This means that the cells in situ are by no means fully turgid. On the contrary, the cell volume in situ is similar to the volume at the point of incipient plasmolysis: the cell volumes of extensor and flexor cells in situ were only 1.01 times and 1.1 times larger, respectively, than at the point of incipient plasmolysis, whereas at full turgidity (cells in water) the corresponding factors were 1.8 and 1.5. It is suggested that the high elasticity of the longitudinal walls, the anisotropy of the cell walls, and the low water potential of the sections which is correlated with slightly stretched cell walls in situ, are favourable and effective for converting osmotic work in changes in length of the pulvinus cells, and thus for the up and down movement of the leaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ε:

volumetric elastic modulus

εi :

instantaneous volumetric elastic modulus

εi :

stationary volumetric elastic modulus

\(\bar \varepsilon _s \) :

weight-averaged stationary bulk modulus of extensibility

π0 :

osmotic pressure of the vacuole of a cell at the point of incipient plasmolysis

\(\bar \pi _0 \) :

weight-averaged osmotic pressure of the vacuoles of the tissue at 50% incipient plasmolysis

ψ:

water potential

References

  • Aylor, D.E., Parlange, J.-Y., Krikorian, A.D. (1973) Stomatal mechanics. Am. J. Bot. 60, 163–171

    Google Scholar 

  • Brauner, M. (1932) Untersuchungen über die Lichtturgorreaktionen des Primärblattgelenks von Phaseolus multiflorus. Planta 18, 288–337

    Google Scholar 

  • Bünning, E. (1959) Tagesperiodische Bewegungen. In: Handbuch der Pflanzenphysiologie, Vol. XVII/1: Physiologie der Bewegungen, pp. 579–656, Ruhland, W., ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Campbell, N.A., Garber, R. (1980) Vacuolar transitions in the motor cells of Albizzia. In: Plant membrane transport: current conceptual issues, pp. 441–442, Spanswick, R.M., Lucas, W.J., Dainty, J., eds. Elsevier/North-Holland Biomedical Press

  • Campbell, N.A., Satter, R.L., Garber, R.G. (1981) Apoplastic transport of ions in the motor organ of Samanea. Proc. Natl. Acad. Sci. USA 78, 2981–2984

    Google Scholar 

  • Dainty, J. (1976) Water relations of plant cells. In: Encyclopedia of plant physiology, N.S., vol. 2: Transport in plants, IIA: Cells, pp. 12–35, Lüttge, U., Pitman, M.G., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fischer, R.A. (1973) The relationship of stomatal aperture and guard-cell turgor pressure in Vicia faba. J. Exp. Bot. 24, 387–399

    Google Scholar 

  • Freudling, C. (1984) Membranpotential und Ionenmilieu der Zellwand im Extensor des Laminargelenks von Phaseolus coccineus L.: Funktion und Bedeutung bei circadianen Volumenänderungen. Ph.D. thesis, University of Tübingen, FRG

    Google Scholar 

  • Freudling, C., Mayer, W.-E., Gradmann, D. (1980) Electrical membrane properties and circadian rhythm in extensor cells of the laminar pulvini of Phaseolus coccineus L. Plant Physiol. 65, 966–968

    Google Scholar 

  • Hosokawa, Y., Kiyosawa, K. (1983) Diurnal K+ and anion transport in Phaseolus pulvinus. Plant Cell Physiol. 24, 1065–1072

    Google Scholar 

  • Iglesias, A., Satter, R.L. (1983) H+ fluxes in excised Samanea motor tissue. II. Rhythmic properties. Plant Physiol. 72, 570–572

    Google Scholar 

  • Mayer, W.-E. (1977) Potassium and chloride distribution in the secondary pulvinus of Phaseolus coccineus L. during circadian leaf movement under 12:12 hour light-dark conditions. Z. Pflanzenphysiol. 83, 127–135

    Google Scholar 

  • Mischkind, M., Palevitz, B.A., Raikhel, N.V. (1981) Cell wall architecture: normal development and environmental modification of guard cells of Cyperaceae and related species. Plant Cell Environ. 4, 319–329

    Google Scholar 

  • Morse, M.J., Satter, R.L. (1979) Relationships between motor cell ultrastructure and leaf movements in Samanea saman. Physiol. Plant. 46, 338–346

    Google Scholar 

  • Mosebach, G. (1944) Untersuchungen über die tagesperiodische Bewegung der Blattgelenke von Phaseolus. Jahrb. Wiss. Bot. 89, 20–88

    Google Scholar 

  • Passioura, J.B. (1980) The meaning of matric potential. J. Exp. Bot. 31, 1161–1169

    Google Scholar 

  • Rappoport, Z. (1967) Handbook of tables for organic compound identification, 3rd edn. The Chemical Rubber Co., Cleveland

    Google Scholar 

  • Raschke, K. (1979) Movements of stomata. In: Encyclopedia of plant physiology, N.S., vol. 7: Physiology of movements, pp. 383–441, Haupt, W., Feinlieb, M.E., eds.. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Satter, R.L. (1979) Leaf movement and tendril curling. In: Encyclopedia of plant physiology, N.S., vol. 7: Physiology of movements, pp. 442–484, Haupt, W., Feinlieb, M.E., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Satter, R.L., Sabnis, D.D., Galston, A.W. (1970) Phytochrome controlled nyctinasty in Albizzia julibrissin. I. Anatomy and fine structure of the pulvinule. Am. J. Bot. 57, 374–381

    Google Scholar 

  • Schrempf, M., Mayer, W.-E. (1980) Electron microprobe analylaminar pulvinus of Phaseolus coccineus L. Z. Pflanzenphysiol. 100 247–255

    Google Scholar 

  • Tyerman, S.D. (1982) Water relations of sea grasses. Plant Physiol. 69, 957–965

    Google Scholar 

  • Tyree, M.T., Jarvis, P.G. (1983) Water in tissues and cells. In: Encyclopedia of plant physiology, N.S., vol. 12B: Physiological plant ecology II: Water relations and carbon assimilation, pp. 36–77, Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Weintraub, M. (1952) Leaf movements in Mimosa pudica L. New Phytol. 50, 357–381

    Google Scholar 

  • Wyn Jones, R.G., Gorham, J. (1983) Osmoregulation. In: Encyclopedia of plant physiology, N.S., vol 12C: Physiological plant ecology III: Responses to the chemical and biological environment, pp. 35–58, Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ziegenspeck, W. (1938) Die Micellierung der Turgeszenzmechanismen. Teil I: Die Spaltöffnungen (mit phylogenetischen Ausblicken). Bot. Arch. 39, 268–309; 332–372

    Google Scholar 

  • Zimmermann, U., Hüsken, D. (1980) Turgor pressure and cell volume relaxation in Halicystis parvula. J. Membr. Biol. 56, 55–64

    Google Scholar 

  • Zimmermann, U., Steudle, E. (1978) Physical aspects of water relations of plant cells. Adv. Bot. Res. 6, 45–117

    Google Scholar 

  • Zimmermann, W. (1929) Die Schlafbewegungen der Laubblätter. Tübinger Naturwiss. Abh. 12, 16–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, W.E., Flach, D., Raju, M.V.S. et al. Mechanics of circadian pulvini movements in Phaseolus coccineus L.. Planta 163, 381–390 (1985). https://doi.org/10.1007/BF00395147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395147

Key words

Navigation