Skip to main content
Log in

Water use by the desert cucurbit Citrullus colocynthis (L.) Schrad.

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The rates of water use and leaf surface conductance of Citrullus colocynthis (Cucurbitacea) were evaluated from measurements of the surface temperature and microenvironment of leaves. At desert sites in Saudi Arabia the transpiration rates reached 0.13–0.17 g m-2 s-1 and the leaf temperatures were always close to air temperature. Leaf models (dry) placed in the canopy were considerably warmer than the air. To investigate responses over a wider range of conditions, plants were grown in a controlled environment room. It was found that when conditions were made hotter than those that occurred in the desert, the stomatal conductance increased greatly. Transpiration rate attained 0.6 g m-2 s-1 and the leaves were up to seven degrees cooler than the air. The results suggest a finely-tuned control mechanism working like a switch when the leaves experience extreme conditions, and enabling the plant to avoid lethal temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Althawadi AM (1985) The leaf energy balance of a desert plant Citrullus colocynthis (L.) Schrad, with special reference to water economy. Ph D Thesis, University of Edinburgh

  • Anon (1977) Agro Climatological Study of the Arab World (in Arabic). Government Printers, Riyadh.

  • Evanari M, Shanan L, Tadmor N (1971) The Negev, the Challenge of a Desert. Harvard University Press

  • Gates DM, Papian LE (1971) Atlas of Energy Budget of Plant Leaves. Academic Press, New York

    Google Scholar 

  • Grace J (1974) The effect of wind on grasses 1. Cuticular and substomatal transpiration. J Exp Bot 25:542–551

    Google Scholar 

  • Grace J (1983) Plant-Atmosphere Relationships. Chapman and Hall, London

    Google Scholar 

  • Lange OL (1959) Untersuchungen über Wärmehaushalt und Hitzeresistenz mauretanischer Wüsten-und Savannenpflanzen. Flora 147:595–651

    Google Scholar 

  • Lange OL (1962) Über die Beziehungen zwischen Wasser- und Wärmehaushalt von Wüstenpflanzen. Veröffentlichungen des Geobotanischen Institutes der Eidg. Techn. Hochschule, Zürich 37:155–168

    Google Scholar 

  • Lange OL, Lange R (1963) Untersuchungen über Blattemperaturen, Transpiration und Hitzeresistenz an Pflanzen mediterraner Standorte (Costa brava, Spanien) Flora 153:387–425

    Google Scholar 

  • Linacre ET (1964) A note on a feature of leaf and air temperatures. Agric Met 1:66–72

    Google Scholar 

  • Linacre ET (1967) Further notes on a feature of leaf and air temperatures. Archiv für Meteorologie, Geophysik und Bioklimatologie 15:422–436

    Google Scholar 

  • McCree KJ (1981) Photosynthetically active radiation. In: Physiological plant ecology 1. Response to the physical environment, Lange OL, Nobel PS, Osmond C, Ziegler H (eds) Vol 12A. Springer, Berlin Heidelberg New York, pp 41–55

    Google Scholar 

  • Maximov NA (1929) The plant in Relation to Water. Allen and Unwin, London

    Google Scholar 

  • Monteith JL (1973) Principles of Environmental Physics. Arnold, London

    Google Scholar 

  • Pearcy RW, Berry JA, Bartholemew B (1974) Field photosynthetic performance and leaf temperatures of Phragmites communis under summer conditions in Death Valley, California. Photosynthetica 8:104–108

    Google Scholar 

  • Schulze E-D, Lange OL, Koch W (1972) Ökophysiologische Untersuchungen an Wild- und Kulturpflanzen der Negev-Wüste II. Die Wirkung der Außenfaktoren auf CO2-Gaswechsel und Transpiration am Ende der Trockenzeit. Oecologia (Berlin) 8:334–355

    Google Scholar 

  • Schulze E-D, Lange OL, Kappen L, Buschbom U (1973) Stomatal responses to changes in temperature at increasing water stress. Planta 110:29–42

    Google Scholar 

  • Sen DN (1973) Ecology of indian desert III. Survival adaptations of vegetation in dry environments. Vegetatio 27:201–65

    Google Scholar 

  • Sen DN, Bhandari MC (1974) On the ecology of a perennial cucurbit in the Indian arid zone-Citrullus colocynthis (Linn) Schrad Int J Biometeor 18:113–120

    Google Scholar 

  • Smith WK (1978) Temperatures of desert plants: another perspective on the adaptability of leaf size. Science 201:614–616

    Google Scholar 

  • Squire GR, Mansfield TA (1972) Studies of the mechanism of action of fusicoccin, the fungal toxin that induces wilting, and its interaction with abscisic acid. Plant 105:71–78

    Google Scholar 

  • Stălfelt MG (1962) The effect of temperature on opening of the stomatal cells. Physiologia Plantarum 15:772–779

    Google Scholar 

  • Stocker O (1976) The water-photosynthesis syndrome and the geographical plant distribution in the Saharan deserts. In: Water and Plant Life: Problems and Modern Approaches. Lange OL, Kappen L, Schulze E-D (eds) Springer, Berlin Heidelberg New York, pp 506–521

    Google Scholar 

  • Unsworth MH, Black VJ (1981) Stomatal responses to pollutants. Zohary M (1962) Plant life of Palestine: Israel and Jordan. Ronald Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Althawadi, A.M., Grace, J. Water use by the desert cucurbit Citrullus colocynthis (L.) Schrad.. Oecologia 70, 475–480 (1986). https://doi.org/10.1007/BF00379514

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00379514

Key words

Navigation