Skip to main content
Log in

The behavior of the coiled body in cells infected with adenovirus in vitro

  • Autoantibodies as Clinical Markers
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The coiled body is a phylogenetically conserved nuclear organelle whose function is not known. Probes for detection of p80-coilin, an 80 kDa protein enriched in the coiled body, have made possible studies determining the behavior of the coiled body during the cell cycle, in proliferating cells, as well as reports suggesting some relationship of the coiled body to mRNA splicing and to the nucleolus. The objective of this study is to examine the distribution of p80-coilin and nucleolar proteins in cells infected with adenovirus in vitro. HeLa cells grown as monolayers were infected with successive dilutions of type 5 human adenovirus culture and fixed in methanol/acetone at different time points. Single and double indirect immunofluorescence was performed with human autoantibodies to p80-coilin, fibrillarin, NOR-90/hUBF, RNA polymerase I, PM-Scl, and To, as well as rabbit polyclonal serum to p80-coilin (R288) and mouse monoclonal antibody to adenovirus 72-kDa DNA-binding protein. Indirect immunofluorescence (IIF) with anti- p80-coilin antibodies showed that the usual bright dot-like coiled body staining pattern was replaced in infected cells by 1–5 clusters of tiny dots at the periphery of the nucleus. This phenomenon was first detected within 12 h of infection and affected more severely cells with increased length and load of infection. Cells subjected to heat shock presented no such alteration. Double IIF showed that cells with abnormal coiled body appearance expressed the viral 72-kDa DNA-binding protein. Nucleolar proteins RNA polymerase I and NOR-90/hUBF became associated with the p80-coilin-enriched clusters and were no longer detected in the nucleolus. Other nucleolar proteins, like PM-Scl and To, remained associated to the nucleolus and were not detected in the newly formed clusters. Fibrillarin had a heterogeneous behavior, being restricted to the nucleolus in some infected cells while in some others it was associated with the p80-coilin-enriched clusters. Thus our results showed that in vitro adenovirus infection induced radical redistribution of nucleolar and coiled body constituents into newly formed structures characterized by clusters of tiny dots in the periphery of the nucleus. The fact that three major proteins involved in rRNA synthesis and processing colocalized with p80-coilin in these clusters may bring additional support to the idea that the coiled body and p80-coilin may be implicated in functions related to the nucleolus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramon Y Cajal S (1903) Trab. Lab. Invest. Biol. 2: 129–221

    Google Scholar 

  2. Hardin JH, Spicer SS & Greene WB (1969) Anat. Rec. 164: 403–432

    Google Scholar 

  3. Seite R, Pebusque M-J & Vio-Cigna M (1982) Biol. Cell. 46: 97–100

    Google Scholar 

  4. Lafarga M, Hervas JP, Santa-Cruz MC, Villegas J & Crespo D (1983) Anat. Embryol. 166–175

  5. Andrade LEC, Chan EKL, Raska I, Peebles CL, Roos G & Tan EM (1991) J. Exp. Med. 173: 1407–1419

    Google Scholar 

  6. Andrade LEC, Tan EM & Chan EKL (1993) Proc Natl. Acad. Sci USA 90: 1947–1951

    Google Scholar 

  7. Carmo-Fonseca M, Ferrira J & Lamond A (1993) J. Cell. Biol. 120: 841–852

    Google Scholar 

  8. Ochs RL, Stein TWJr., Andrade LEC, Gallo D, Chan EKL, Tan EM & Brasch K (1995) Mol. Biol. Cell. 6: 345–356

    Google Scholar 

  9. Raska I, Andrade LEC, Ochs RL, Chan EKL, Chang C-M, Roos G & Tan EM (1991) Exp. Cell. Res. 195: 27–37

    Google Scholar 

  10. Frey MR & Matera G (1995) Proc. Natl. Acad. Sci. USA 92: 5915–5919, 1995

    Google Scholar 

  11. Fakan S, Leser G & Martin TE (1984) J. Cell. Biol. 98: 358–363

    Google Scholar 

  12. Carmo-Fonseca M, Pepperkok R, Carvalho MT & Lamond A (1992) J. Cell. Biol. 117: 1–14

    Google Scholar 

  13. Matera AG & Ward DC (1993) J. Cell. Biol. 121: 715–727

    Google Scholar 

  14. Raska I, Ochs RL, Andrade LEC, Chan EKL, Burlingame R, Peebles CP, Gruol D & Tan EM (1990) J. Struct. Biol. 104: 120–127

    Google Scholar 

  15. Bohmann K, Ferreira J, Santama N, Weis K & Lamond AI (1995) J. Cell. Sci. (Suppl. 19) 107–113

    Google Scholar 

  16. Ochs RL, Stein TWJr. & Tan EM (1994) J. Cell. Sci. 107: 385–399, 1994

    Google Scholar 

  17. Malatesta M, Zancanaro C, Martin TE, Chan EKL, Almaric F, Lührmann R, Vogel P & Fakan S (1994) Eur. J. Cell. Biol. 65: 82–93

    Google Scholar 

  18. Meier UT & Blobel G (1992) Cell 70: 127–138

    Google Scholar 

  19. Meier UT & Blobel G (1994) J. Cell. Biol. 127: 1505–1514

    Google Scholar 

  20. Jimenéz-Garcia LF, Segura-Valdez M de L, Ochs RL, Rothblum L, Hannan R & Spector DL (1994) Mol. Biol. Cell. 5: 955–966

    Google Scholar 

  21. Bohmann K, Ferreira JA & Lamond A (1995) J. Cell. Biol. 131: 817–831

    Google Scholar 

  22. Puvion-Dutilleul F, Bachellerie JP, Visa N & Puvion E (1994) J. Cell. Sci. 107: 1457–1468

    Google Scholar 

  23. Bridge E, Xia D-X, Carmo-Fonseca M, Cardinali B, Lamond AI & Pettersson U (1995) J. Virol. 69: 281–290

    Google Scholar 

  24. Puvion-Dutilleul F & Christensen ME (1993) Eur. J. Cell. Biol. 61: 168–176

    Google Scholar 

  25. Branton PE, Evelegh M, Rowe DT, Graham FL & Bacchetti S (1985) Can. J. Biochem. Cell. Biol. 63: 941–952

    Google Scholar 

  26. Reimer G, Pollard KM, Penning CA, Ochs RL, Lischwe MA, Busch H & Tan EM (1987) Arthritis Rheum. 30: 793–800

    Google Scholar 

  27. Reddy R, Tan EM, Henning D, Nohga K & Busch H (1983) J. Biol. Chem. 258: 1381–1386

    Google Scholar 

  28. Reichlin M, Maddison PJ, Targoff IN, Bunch T, Arnett F, Sharp G, Treadwell E & Tan EM (1984) J. Clin. Invest. 4: 40–45

    Google Scholar 

  29. Chan EKL, Imai H Hamel JC & Tan EM (1991) J. Exp. Med. 174: 1239–1244

    Google Scholar 

  30. Reimer G, Rose KM, Scheer U & Tan EM (1987) J. Clin. Invest. 79: 65–72

    Google Scholar 

  31. Horwitz MS: Adenoviridae & their replication. In: Fields BN & Knipe DM, eds. Virology, Second Edition, Raven Press Ltd., New York, 1990, pp. 1679–1712

    Google Scholar 

  32. Beltz GA & Flint SJ (1979) J. Mol. Biol. 131: 353–373

    Google Scholar 

  33. Raskas HJ, Thomas DC & Green M (1970) Virology 40: 893–899, 1970

    Google Scholar 

  34. Rebelo L, Almeida F, Ramos C, Bohmann K, Lamond AI & Carmo-Fonseca M (1996) Mol. Biol. Cell. 7: 1137–1151

    Google Scholar 

  35. Benavente R, Reimer G, Rose KM, Hügle-Dörr B & Scheer U (1988) Chromosoma (Berlin) 97: 115–123

    Google Scholar 

  36. Wagner EK & Roizman B (1969) J. Virol. 4: 36–46

    Google Scholar 

  37. Yokoyama Y, Niwa K & Tamaya T (1992) Exp. Cell. Res. 202: 77–86

    Google Scholar 

  38. Lamond A & Carmo-Fonseca M (1993) Trends Cell. Biol. 3: 198–204

    Google Scholar 

  39. Wu Z, Murphy C, Wu C-HH, Tsvetkov A & Gall JG (1993) CSH Symp. Quantit. Biol. 58: 747–754

    Google Scholar 

  40. Hervas JP, Villegas J, Crespo D & Lafarga M (1980) Am. J. Anat. 159: 447–454

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, S.H., Silva, N.P., Delício, L.R. et al. The behavior of the coiled body in cells infected with adenovirus in vitro . Molecular Biology Reports 23, 183–189 (1996). https://doi.org/10.1007/BF00351167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351167

Key words

Navigation