Skip to main content
Log in

Genetics of mitochondrial ribosomes of yeast: Mitochondrial lethality of a double mutant carrying two mutations of the 21S ribosomal RNA gene

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Among the mitochondrial conditional mutations localized in the gene coding for the 21S ribosomal RNA, one — ts 902 — produces severely reduced amounts of 21S RNA and 50S subunit. We investigated its physiological properties and found that this thermosensitive mutation was associated with highly pleiotropic effects. The mutant phenotype is associated with cell death in certain conditions, and with a massive accumulation of rho- mutants at non-permissive temperature. Furthermore, interactions with the sites of action of erythromycin and chloramphenicol, both localized within the 21S rRNA, were detected. The mutant is hypersensitive to erythromycin and has a cis-incompatibility with the chloramphenicol-resistant mutation C R321 .

Ts 902 thus appears to have a dual effect, not only at the ribosomal level but also at a cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bolotin-Fukuhara M, Coen D, Deutsch J, Dujon B, Netter P, Petrochilo E, Slonimski PP (1971) La recombinaison des mitochondries chez Saccharomyces cerevisiae. Bull Inst Pasteur, Paris 69:215–239

    Google Scholar 

  • Bolotin-Fukuhara M, Faye G, Fukuhara H (1977) Temperature sensitive respiratory-deficient mitochondrial mutations. Isolation and genetic mapping. Mol Gen Genet 152:295–305

    Google Scholar 

  • Bolotin-Fukuhara M (1979) Mitochondrial and nuclear mutations that affect the biogenesis of the mitochondrial ribosomes of yeast. I. Genetics. Mol Gen Genet 177:39–46

    Google Scholar 

  • Branlant C, Krol A, Machatt MA, Pouyet J, Ebel J-P, Edwards K, Kössel H (1981) Primary and secondary structure of E. coli MRE 600 23S rRNA. Comparison with models of secondary structures for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mit rRNAs. Nucl Acids Res 9:4303–4320

    Google Scholar 

  • Dujon B (1980) Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles. Cell 20:185–197

    Google Scholar 

  • Glotz C, Zwieb C, Brimacombe R, Edwards K, Kössel H (1981) Secondary structure of the large subunit ribosomal RNA from E. coli Zea mays chloroplast, and human and mouse mitochondrial ribosomes. Nucl Acids Res 9:3287–3306

    Google Scholar 

  • Julou C (1980) Mutations des gènes des ARN ribosomiques mitochondriaux de Saccharomyces cerevisiae. Thèse de 3è Cycle, Orsay

  • Li M, Tzagoloff A, Underbrink-Lyon K, Martin NC (1982) Identification of the Paromomycin-resistance mutation in the 15S rRNA gene of yeast mitochondria. J Biol Chem 257:5921–5928

    Google Scholar 

  • Marmiroli N, Tassi F, Bianchi L, Algeri AA, Puglisi PP, Esposito MS (1981) Erythromycin and cycloheximide sensitivities of protein and RNA synthesis in sporulating cells of S. cerevisiae: environmentally induced modifications controlled by chromosomal and mitochondrial genes. Curr Genet 4:51–62

    Google Scholar 

  • Martin RP, Bordonné R, Dirheimer G (1982) The paromomycin region in the yeast mitochondrial genome. In: Proceedings of the special FEBS meeting on Cell Function and Differenciation. Athens, Greece, A.R. LISS (NY) (in press)

    Google Scholar 

  • Noller HF (1980) Structure and topography of ribosomal RNA. In: Chambliss G, Craven GR, Davis J, Davis K, Kahan L, Nomura N (eds) Ribosomes, structure, function and genetics. University Park Press, Baltimore, pp 3–22

    Google Scholar 

  • Schweyen RJ, Kaudewitz F (1976) Formation of rho- petites in yeast. I. Multifactorial crosses (rho+ x rho+) involving a mutation conferring temperature-sensitivity of rho factor stability Mol Gen Genet 149:311–322

    Google Scholar 

  • Sor F, Faye G (1979) Mitochondrial and nuclear mutations that affect the biogenesis of the mitochondrial ribosomes of yeast. II. Biochemistry. Mol Gen Genet 177:47–56

    Google Scholar 

  • Stiegler P, Carbon P, Ebel J-P, Ehresmann C (1981) A general secondary-structure model for procaryotic and eucaryotic rRNAs of the small ribosomal subunit. Eur J Biochem 120:487–495

    Google Scholar 

  • Ter-Avanessian MD, Zimmerman J, Inge-Vechtomoy SG, Sudarikov AB, Smirnov VN, Surguchov AP (1982) Ribosomal recessive suppressors cause a respiratory deficiency in yeast Saccharomyces cerevisiae. Mol Gen Genet 185:319–323

    Google Scholar 

  • Williamson DH, Maroudas NG, Wilkie D (1971) Induction of the cytoplasmic petite mutation in Saccharomyces cerevisiae by the antibacterial antibiotics erythromycin and chloramphenicol. Mol Gen Genet 111:209–223

    Google Scholar 

  • Woese CR, Magrum LT, Gupta R, Siegle RB, Stahl DA, Kop J, Crawford N, Brosius J, Gutell R, Hogran JJ, Noller HF (1980) Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidences. Nucl Acids Res 8:2275–2293

    Google Scholar 

  • Zwieb C, Glotz C, Brimacombe R (1981) Secondary structure comparisons between small subunit rRNA molecules from six different species. Nucl Acids Res 9:3621–3640

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Kaudewitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julou, C., Bolotin-Fukuhara, M. Genetics of mitochondrial ribosomes of yeast: Mitochondrial lethality of a double mutant carrying two mutations of the 21S ribosomal RNA gene. Mol Gen Genet 188, 256–260 (1982). https://doi.org/10.1007/BF00332684

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332684

Keywords

Navigation