Skip to main content
Log in

Stimulated raman scattering of fuel droplets

Chemical concentration and size determination

  • Laser Diagnostics In Combustion
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The strong stimulated Raman scattering (SRS) from diesel fuel droplets has the potential of providing the relative concentration of multicomponent fuel and the absolute size of individual droplets. The morphology-dependent resonances (MDRs) of a sphere cause the droplet to act as an optical resonator which greatly lowers the SRS threshold. The number density, quality factor, and frequency shift of several MDRs are calculated as a function of the ratio of the index of refraction of the liquid and the surrounding gas, which approaches unity at the thermodynamic critical condition for the fuel spray. The SRS spectra of monodispersed droplets of toluene, pentane, Exxon-Aromatic-150, and Mobil D-2 are presented. The exponential growth region of the SRS intensity I 1S as a function of the input laser intensity I input is investigated for the toluene carbon ring breathing mode v 2 and the pentane C-H stretching region. The I 1S ratio of toluene and pentane is measured as a function of the ratio of the toluene and pentane concentration for monodispersed droplets. The reduced fluctuation in I 1S when I input is changed from multimode to single-mode is displayed as a histogram of the I 1S of the v 2 mode of toluene droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Thurn, W. Kiefer: Appl. Opt. 24, 1515 (1985)

    Google Scholar 

  2. T.R. Lettieri, R.E. Preston: Opt. Commun. 54, 349 (1985)

    Google Scholar 

  3. K.H. Fung, I.N. Tang: J. Colloid Interfac. Sci. 130, 219 (1989)

    Google Scholar 

  4. A.C. Eckbreth: Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Massachusetts 1988) pp. 220–300

    Google Scholar 

  5. S.-X. Qian, J.B. Snow, R.K. Chang: Opt. Lett. 10, 499 (1985)

    Google Scholar 

  6. R.G. Pinnick, A. Biswas, R.L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez: Opt. Lett. 13, 1099 (1989)

    Google Scholar 

  7. M. Golombok, D.B. Pye: Chem. Phys. Lett. 151, 161 (1988)

    Google Scholar 

  8. M. Golombok, D.B. Pye: J. Phys. D: Appl. Phys. 22, 851 (1989)

    Google Scholar 

  9. S.C. Hill, R.E. Benner: J. Opt. Soc. Am. B 3, 1509 (1986)

    Google Scholar 

  10. P.W. Barber, S.C. Hill: In Optical Particle Sizing: Theory and Practice, ed. by G. Gouesbet, G. Grehan (Plenum, New York 1988) pp. 43–53

    Google Scholar 

  11. S.C. Ching, H.M. Lai, K. Young: J. Opt. Soc. Am. B 4, 1995 (1987)

    Google Scholar 

  12. J.-Z. Zhang, D.H. Leach, R.K. Chang: Opt. Lett. 13, 270 (1988)

    Google Scholar 

  13. D.S. Benincasa, P.W. Barber, J.-Z. Zhang, W.-F. Hsieh, R.K. Chang: Appl. Opt. 26, 1348 (1987)

    Google Scholar 

  14. J.B. Snow, S.-X. Qian, R.K. Chang: Opt. Lett. 10, 37 (1985)

    Google Scholar 

  15. S.-X. Qian, R.K. Chang: Phys. Rev. Lett. 56, 926 (1986)

    Google Scholar 

  16. C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York 1983) pp. 93–104

    Google Scholar 

  17. S.C. Hill, R.E. Benner: In Optical Effects Associated with Small Particles, ed. by P.W. Barber, R.K. Chang (World Scientific, Singapore 1988) pp. 3–61

    Google Scholar 

  18. H.A. Haus: Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, New Jersey 1984) pp. 201–209

    Google Scholar 

  19. H.M. Lai, P.T. Leung, K. Young: Limitations on Photon Lifetime in Electromagnetic Quasi-Modes in Highly Transparent Microdroplets (to be published)

  20. S.C. Hill, C.K. Rushforth, R.E. Benner, P.R. Conwell: Appl. Opt. 24, 2380 (1985)

    Google Scholar 

  21. P. Chylek: J. Opt. Soc. Am. 66, 285 (1976)

    Google Scholar 

  22. The C-H stretching region of pentane consists of symmetric and asymmetric CH2 and CH3 stretching modes. The data presented are integrated over the entire region. Selecting a single vibrational mode does not significantly improve either the exponential fit in Fig. 5a or the linearity of Fig. 5b but does reduce the signal-to-noise ratio

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acker, W.P., Serpengüzel, A., Chang, R.K. et al. Stimulated raman scattering of fuel droplets. Appl. Phys. B 51, 9–16 (1990). https://doi.org/10.1007/BF00332318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332318

PACS

Navigation