Skip to main content
Log in

Denitrification with methanol in the presence of high salt concentrations and at high pH levels

  • Environmental Microbiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

In the combined ion exchange/biological denitrification process for nitrate removal from ground water, in which nitrate is removed by ion exchange, the resins are regenerated in a closed circuit by a biological denitrification reactor. This denitrification reactor eliminates nitrate from the regenerant. Methanol is used as electron donor for biological denitrification. To obtain sufficient regeneration of the resins within a reasonable time, high NaCl or NaHCO3 concentrations (10–30 g/l) in the regenerant are necessary. High NaHCO3 concentrations affected the biological denitrification in three ways: a) a slight decrease in denitrification capacity (30%) was observed; b) the yield coefficient and CH3OH/NO3 -−N ratio decreased. When high NaHCO3 concentrations (above 10g NaHCO3/l) were used, the yield coefficient was 0.10–0.13 g VSS/g NO3 -−N and the CH3OH/NO3 -−N ratio was 2.00–2.03 g/g; c) high NaHCO3 concentrations influenced nitrite production. Nitrite is an intermediate product of biological denitrification and with rising NaHCO3 concentrations nitrite accumulation was suppressed. This was explained by the effect of high NaHCO3 concentrations on the pH in the microenvironment of the denitrifying organisms. High NaCl concentrations also resulted in a slight decrease in denitrification capacity, but the second and third effects were not observed in the presence of high NaCl concentrations.

Although the pH in the regenerant will rise as a result of biological denitrification, the capacity of a denitrification reactor did not decrease significantly when a pH of 8.8–9.2 was reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association (1980) Standard methods for the examination of waste and wastewater, 15th edn. APHA, New York

    Google Scholar 

  • Arvin E, Kristensen GH (1982) Effect of denitrification on the pH in biofilms. Wat Sci Tech 14:833–848

    Google Scholar 

  • Balderston WL, McN. Sieburth J (1976) Nitrate removal in a closed-system aquaculture by columnar denitrification. Appl Environ Microbiol 32:808–818

    Google Scholar 

  • Bruyn J (1984) Ground water quality — manuring: problems with nitrate in Eastern Gelderland. H2O 17:502–505 (in Dutch)

    Google Scholar 

  • Christensen MH, Harremoës P (1975) A literature review of biological denitrification of sewage. Proc IAWPR Conf on Nitrogen as a Water Pollutant, Copenhagen, August 18–20, Vol 3

  • Claus G, Kutzner HJ (1985a) Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans. Appl Microbiol Biotechnol 22:283–288

    Google Scholar 

  • Claus G, Kutzner HJ (1985b) Denitrification of nitrate and nitric acid with methanol as carbon source. Appl Microbiol Biotechnol 22:378–381

    Google Scholar 

  • Engberg DJ, Schroeder ED (1975) Kinetics and stoichoimetry of bacterial denitrification as a function of cell residence time. Water Res 9:1051–1054

    Google Scholar 

  • European Community (1980) Council directive of 15 July 1980 relating to the quality of water intended for human consumption, 80/778/EEC. Official Journal of the European Community 23, L229:11–29

    Google Scholar 

  • Frick BR, Richard Y (1985) Ergebnisse und Erfahrungen mit der biologischen Denitrifikation in einem Wasserwerk. Vom Wasser 64:145–154

    Google Scholar 

  • Furrer OJ, Stauffer W (1986) Stickstoff in der Landwirtschaft. Gas-Wasser-Abwasser 66:460–472

    Google Scholar 

  • Hoek JP van der, Klapwijk A (1985) Nitrate removal from ground water. H2O 18:57–62 (in Dutch)

    Google Scholar 

  • Hoek JP van der, Klapwijk A (1987) Nitrate removal from ground water. Accepted for publication in Water Res

  • Klapwijk A, Hoeven JCM van der, Lettinga G (1981) Biological denitrification in an upflow sludge blanket reactor. Water Res 15:1–6

    Google Scholar 

  • Klapwijk A, Jol C, Donker HJGW (1979) The application of an upflow reactor in the denitrification step of biological sewage purification. Water Res 13:1009–1015

    Google Scholar 

  • Klotter HE (1969) Möglichkeiten zur Denitrifikation von Grundwässern. Vom Wasser 36:93–140

    Google Scholar 

  • Kurt M, Denac M, Dunn IJ, Bourne JR (1984) Denitrification of drinking water using hydrogen in a biological fluidized bed reactor. Proc third European Congress on Biotechnology, München, September 10–14, Vol III:163–168

    Google Scholar 

  • Marsh TJ (1980) Towards a nitrate balance for England and Wales. Water Serv October 1980:601–606

    Google Scholar 

  • McCarty PL, Beck L, St. Amant PP (1969) Biological denitrification of agricultural wastewaters by addition of organic materials. Proc 24th Waste Conf, Purdue Univ Ext Ser 135:1271–1285

    Google Scholar 

  • Müller WR, Sperandio A (1986) Der Einsatz zweier Kunststoffgranulate für die Denitrification in der biologischen Wasseraufbereitung. GWF-Wasser/Abwasser 127:1–10

    Google Scholar 

  • Nilsson I, Ohlson S, Häggström L, Molin N, Mosbach K (1980) Denitrification of water using immobilized Pseudomonas denitrificans cells. Eur J Appl Microbiol Biotechnol 10:261–274

    Google Scholar 

  • NNI (1966) Dutch normalised standard method NEN 1056 IV. 6. Nederlands Normalisatie-Instituut, Delft, the Netherlands

    Google Scholar 

  • NNI (1972) Dutch normalised standard method NEN 3235 6.3. Nederlands Normalisatie-Instituut, Delft, The Netherlands

    Google Scholar 

  • NNI (1981) Dutch normalised standard method NEN 6440. Nederlands Normalisatie-Instituut, Delft, The Netherlands

    Google Scholar 

  • Partos J, Richard Y (1985) Traitement de l'eau souterraine polluée par les nitrates. Wat Supply 3:75–92

    Google Scholar 

  • Philipot JM (1982) Une voie biologique pour la dénitrification des eaux potables. Trib Cebedeau 35:11–20

    Google Scholar 

  • Philipot JM, Chaffange F, Pascal O (1985) Denitrification biologique: le point sur un an de fonctionnement de la station d'Eragny. Wat Supply 3:93–98

    Google Scholar 

  • Richard Y, Leprince A (1982) Pollution par les nitrates: traitement disponibles. Trib Cebedeau 35:21–33

    Google Scholar 

  • Sontheimer H, Rohmann U (1984) Grundwasserbelastung mit Nitrat-Ursachen, Bedeutung, Lösungswege. GWF-Wasser/Abwasser 125:599–608

    Google Scholar 

  • Timmermans P, Van Haute A (1983) Denitrification with methanol — Fundamental study of the growth and denitrification capacity of Hyphomicrobium sp. Water Res 17:1249–1255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Hoek, J.P., Latour, P.J.M. & Klapwijk, A. Denitrification with methanol in the presence of high salt concentrations and at high pH levels. Appl Microbiol Biotechnol 27, 199–205 (1987). https://doi.org/10.1007/BF00251945

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251945

Keywords

Navigation