Skip to main content
Log in

Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Brezis, H., “Opérateurs Maximaux Monotones”, Amsterdam: North-Holland 1973.

    Google Scholar 

  2. Brockway, G.S., On the uniqueness of singular solutions to boundary-initial value problems in linear elastodynamics, Arch.Rational Mech. Anal. 48, 213–244 (1972).

    Google Scholar 

  3. Chernoff, P. & J. Marsden, “Some Properties of Infinite Dimensional Hamiltonian Systems”, Springer Lecture Notes 425 (1974).

  4. Choquet-Bruhat, Y. (Y. Fourès-Bruhat), Théorème d'existence pour certain systèmes d'équations aux dérivées partielles non linéaires, Acta Math. 88, 141–225 (1952).

    Google Scholar 

  5. Choquet-Bruhat, Y., “Cauchy Problem”, In: Witten, L. (Ed.): Gravitation; an introduction to current research, New York: John Wiley 1962.

    Google Scholar 

  6. Choquet-Bruhat, Y., Solutions C d'équations hyperboliques non linéaires, C.R. Acad. Sci. Paris 272, 386–388 (1971) (see also Gen. Rel. Grav. 1 (1971)).

    Google Scholar 

  7. Choquet-Bruhat, Y., Problèmes mathématiques en relativité, Actes Congress Intern. Math. Tome 3, 27–32 (1970).

    Google Scholar 

  8. Choquet-Bruhat, Y., Stabilité de solutions d'équations hyperboliques non linéaires. Application à l'espace-temps de Minkowski en relativité générale, C.R. Acad. Sci. Paris 274, Ser. A (1972), 843. (See also Uspeskii Math. Nauk. XXIX (2) 176, 314–322 (1974).)

    Google Scholar 

  9. Choquet-Bruhat, Y., and L. Lamoureau-Brousse, Sur les équations de l'elasticité relativiste, C.R. Acad. Sci. Paris 276, 1317–1320 (1973).

    Google Scholar 

  10. Choquet-Bruhat, Y. and J.E. Marsden, tSolution of the local mass problem in general relativity Comm. Math. Phys. (to appear). (See also C.R. Acad. Si. 282, 609–612 (1976)).

  11. Courant, R. & D. Hilbert, “Methods of Mathematical Physics”, Vol. II, New York: Interscience 1962.

    Google Scholar 

  12. Dionne, P., Sur les problèmes de Cauchy bien posés, J. Anal. Math. Jerusalem 10, 1–90 (1962/63).

    Google Scholar 

  13. Dorroh, J.R. & J.E. Marsden, Differentiability of nonlinear semigroups (to appear).

  14. Duvaut, T. & J.L. Lions, “Les Inéquations en Mécanique et en Physique”, Paris: Dunod 1972.

    Google Scholar 

  15. Fichera, G., “Existence Theorems in Elasticity”, in Handbuch der Physik (ed. C. Truesdell), Vol. IVa/2, Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  16. Fischer, A. & J. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I, Commun. Math. Phys. 28, 1–38 (1972).

    Google Scholar 

  17. Fischer, A. & J. Marsden, Linearization stability of nonlinear partial differential equations, Proc. Symp. Pure Math. 27, Part 2, 219–263 (1975).

    Google Scholar 

  18. Frankl, F., Über das Anfangswertproblem für lineare und nichtlineare hyperbolische partielle Differentialgleichungen zweiter Ordnung, Mat. Sb. 2 (44), 814–868 (1937).

    Google Scholar 

  19. Friedman, A., “Partial Differential Equations”, New York: Holt, Rinehart and Winston 1969.

    Google Scholar 

  20. Gårding, L., “Cauchy's Problem for Hyperbolic Equations”, Lecture Notes, Chicago (1957).

  21. Gårding, L., Energy inequalities for hyperbolic systems, in “Differential Analysis”, Bombay Colloq. (1964), 209–225, Oxford: University Press 1964.

    Google Scholar 

  22. Gurtin, M.E., “The Linear Theory of Elasticity”, in Handbuch der Physik (ed. C. Truesdell), Vol. IVa/2, Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  23. Hawking, S.W. & G.F.R. Ellis, “The Large Scale Structure of Spacetime”, Cambridge (1973).

  24. Hille, E. & R. Phillips, “Functional Analysis and Semi-groups”, AMS (1967).

  25. Kato, T., “Perturbation Theory for Linear Operators”, Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  26. Kato, T., Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo 17, 241–258 (1970).

    CAS  PubMed  Google Scholar 

  27. Kato, T., Linear evolution equations of “hyperbolic” type II, J. Math. Soc. Japan 25, 648–666 (1973).

    Google Scholar 

  28. Kato, T., The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58, 181–205 (1975).

    Google Scholar 

  29. Kato, T., “Quasi-linear Equations of Evolution, with Applications to Partial Differential Equations”, Springer Lecture Notes 448, 25–70 (1975).

    Google Scholar 

  30. Knops, R.J. & L.E. Payne, “Uniqueness Theorems in Linear Elasticity”, New York: Springer 1971.

    Google Scholar 

  31. Knops, R.J. & L.E. Payne, Continuous data dependence for the equations of classical elastodynamics, Proc. Camb. Phil. Soc. 66, 481–491 (1969).

    Google Scholar 

  32. Knops, R.J. & E.W. Wilkes, “Theory of Elastic Stability”, in Handbuch der Physik (ed. C. Truesdell), Vol. VIa/3, Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  33. Kōmura, Y., Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan 19, 473–507 (1967).

    Google Scholar 

  34. Krzyzanski, M. & J. Schauder, Quasilineare Differentialgleichungen zweiter Ordnung vom hyperbolischen Typus, Gemischte Randwertaufgaben, Studia. Math. 5, 162–189 (1934).

    Google Scholar 

  35. Lax, P., Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure and Appl. Math. 8, 615–633 (1955).

    Google Scholar 

  36. Lax, P., “Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves”, SIAM (1973).

  37. Leray, J., “Hyperbolic Differential Equations”, Institute for Advanced Study (Notes) (1953).

  38. Lichnerowicz, A., “Relativistic Hydrodynamics and Magnetohydrodynamics”, Amsterdam: Benjamin 1967.

    Google Scholar 

  39. Marsden, J., “Applications of Global Analysis in Mathematical Physics”, Publish or Perish (1974).

  40. Marsden, J., The existence of non-trivial, complete, asymptotically flat spacetimes, Publ. Dept. Math. Lyon 9, 183–193 (1972).

    Google Scholar 

  41. Morrey, C.B., “Multiple Integrals in the Calculus of Variations”, Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  42. Palais, R., “Foundations of Global Nonlinear Analysis”, Amsterdam: Benjamin 1968.

    Google Scholar 

  43. Petrovskii, I., Über das Cauchysche Problem für lineare und nichtlineare hyperbolische partielle Differentialgleichungen, Mat. Sb. 2 (44), 814–868 (1937).

    Google Scholar 

  44. Schauder, J., Das Anfangswertproblem einer quasi-linearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen, Fund. Math. 24, 213–246 (1935).

    Google Scholar 

  45. Sobolev, S.S., “Applications of Functional Analysis in Mathematical Physics”, Translations of Math. Monographs 7, Am. Math. Soc. (1963).

  46. Sobolev, S.S., On the theory of hyperbolic partial differential equations, Mat. Sb. 5 (47), 71–99 (1939).

    Google Scholar 

  47. Wang, C.-C. & C. Truesdell, “Introduction to Rational Elasticity”, Leyden: Noordhoff 1973.

    Google Scholar 

  48. Wheeler, L. & R.R. Nachlinger, Uniqueness theorems for finite elastodynamics, J. Elasticity 4, 27–36 (1974).

    Google Scholar 

  49. Wilcox, C.H., Wave operators and asymptotic solutions of wave propagation problems of classical physics, Arch. Rational Mech. Anal. 22, 37–78 (1966).

    Google Scholar 

  50. Yosida, K., “Functional Analysis”, Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. Antman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, T.J.R., Kato, T. & Marsden, J.E. Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Rational Mech. Anal. 63, 273–294 (1977). https://doi.org/10.1007/BF00251584

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00251584

Keywords

Navigation