Skip to main content
Log in

NADPH/NADP+ ratio: regulatory implications in yeast glyoxylic acid cycle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The utilization by yeast of two carbon sources is carried out through the operation of the glyoxylic acid cycle. Kinetic data from the isocitrate transforming enzymes suggest that the flow of isocitrate through the glyoxylic acid cycle depends upon the inhibition of the isocitrate decarboxylating enzymes. Both isocitrate dehydrogenases are inhibited by a mixture of glyoxylate + oxaloacetate, but for the reasons described in the text we consider that this inhibition is of no physiological significance. On the other hand, we have found that NADPH is a competitive inhibitor of NADP-isocitrate dehydrogenase with respect to NADP+, with a KI similar to its KM. It also produces an additive effect on the NADH-produced inhibition of NAD-isocitrate dehydrogenase. We propose NADPH as the compound that channels the utilization of isocitrate into the glyoxylic acid cycle. This is supported by the finding of an increased NADPH/NADP+ ratio in acetate grown yeast with respect to glucose grown cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Machado, A. and Satrústegui, J., 1981. Biochimie 63: 247–249.

    Google Scholar 

  2. Bautista, J., Satrústegui, J. and Machado, A., 1979. FEBS Letters 105: 333–336.

    Google Scholar 

  3. Cooper, T. G. and Beevers, H., 1969. J. Biol. Chem. 244: 3507–3513.

    Google Scholar 

  4. Machado, A., Núñez de Castro, I. and Mayor, F., 1975. Mol. Cell. Biochem. 6: 93–100.

    Google Scholar 

  5. Dixon, G. and Kornberg, H. L., 1959. Biochem. J. 72: 3 p.

  6. Saez, H. J. and Lagunas, R., 1976. Mol. and Cell. Biochem. 13: 73–78.

    Google Scholar 

  7. Bergmeyer, H. U., 1974. Methods in enzymatic analysis. Vol. III y IV. 2nd ed. Academic Press, New York.

    Google Scholar 

  8. Rottenberg, H., 1979. Methods in Enzymology vol. LV, 549.

    Google Scholar 

  9. Kornberg, H. L., 1966. Biochem. J. 99: 1–11.

    Google Scholar 

  10. Foo, S. S. K. and Badour, S. S., 1977. Can. J. Bot. 55: 2178–2185.

    Google Scholar 

  11. Ingebretsen, O. C., 1975. J. Bacteriol. 124: 65–72.

    Google Scholar 

  12. Johanson, R. M., Hill, J. M. and McFadden, B. A., 1974. Biochim. Biophys. Acta 364: 327–340.

    Google Scholar 

  13. John, P. C. L. and Syrett, P. J., 1967. Biochem. J. 105: 409–416.

    Google Scholar 

  14. Muller, M., Hogg, J. F. and de Duve, C., 1968. J. Biol. Chem. 243: 5385–5395.

    Google Scholar 

  15. Fukui, S. and Tanaka, A., 1979. Trends in Biochem. Sci. 4: 246–249.

    Google Scholar 

  16. Satoh, Y., 1972. Plant Cell Physiol. 13: 493–503.

    Google Scholar 

  17. Ramaley, F. R. and Hudock, M. O., 1973. Biochem. Biophys. Acta 315: 22–36.

    Google Scholar 

  18. Ruffo, A., Moratti, R., Montani, A. and Melzi D'Eril, G. L., 1974. Ital. J. Biochem. 23: 357–370.

    Google Scholar 

  19. Levy, M. R., 1972. Arch. Biochem. Biophys. 152: 463–471.

    Google Scholar 

  20. Tanaka, A., Nabeshima, S., Tokuda, M. and Fukui, S., 1977. Agric. Biol. Chem. 41: 795–799.

    Google Scholar 

  21. Kawamoto, S., Tanaka, A., Jamamura, M., Teranishi, J., Fukui, S. and Osumi, M., 1979. Arch. Microbiol. 112: 1–8.

    Google Scholar 

  22. Vidal, P. and Machado, A., 1977. Mol. Cell. Biochem. 17: 151–156.

    Google Scholar 

  23. Chen, R. F. and Plaut, G. W. E., 1963. Biochemistry 2: 1023–1032.

    Google Scholar 

  24. Plant, G. W. E. and Aogaichi, T., 1968. J. Biol. Chem. 243: 5572–5583.

    Google Scholar 

  25. Veech, R. L., Egleston, R. V. and Krebs, H. A., 1969. Biochem. J. 115: 609–619.

    Google Scholar 

  26. Garland, P. B. and Randle, P. J., 1964. Biochem. J. 93: 678–687.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satrustegui, J., Bautista, J. & Machado, A. NADPH/NADP+ ratio: regulatory implications in yeast glyoxylic acid cycle. Mol Cell Biochem 51, 123–127 (1983). https://doi.org/10.1007/BF00230397

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00230397

Keywords

Navigation