Skip to main content
Log in

Photoreceptor spectral diversity in the retinas of squilloid and lysiosquilloid stomatopod crustaceans

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

  1. 1.

    We examined the retinas of 2 species of stomatopods in the superfamily Squilloidea, Cloridopsis dubia and Squilla empusa, and 2 species of the super-family Lysiosquilloidea, Coronis scolopendra and Lysiosquilla sulcata, using microspectrophotometry in the visible region of the spectrum.

  2. 2.

    Retinas of all species included numerous photostable pigments, such as green reflecting pigment, hemocyanin, colored oil droplets, and vesicles. Both lysiosquilloid species also had intrarhabdomal filters within specialized photoreceptors of the midband.

  3. 3.

    Squilloid species contained a single visual pigment throughout all photoreceptors, with peak absorption at medium wavelengths (near 515nm). Retinas of lysiosquilloids contained a diversity of visual pigments, with estimated λmax values ranging from 397 to 551 nm.

  4. 4.

    Spectral sensitivity functions were estimated for the lysiosquilloid species based on estimates of visual pigment λnax, photoreceptor dimensions, and specific absorbances of the visual pigments and intrarhabdomal filters. Ommatidia of midband Rows 1 to 4 contained pairs of narrowly tuned spectral receptors, appropriate for spectral discrimination, while ommatidia of midband Rows 5 and 6, and all peripheral ommatidia, had broad spectral sensitivity functions.

  5. 5.

    Lysiosquilloid stomatopods have retinas that closely resemble those of gonodactyloids both structurally and in their visual pigment diversity. In contrast, squilloids have retinas that are much simpler. These differences appear to be related to the habitats and activity cycles of species belonging to the 3 major superfamilies of stomatopod crustaceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernard GD (1987) Spectral characterization of butterfly L-receptors using extended Dartnall/MacNichol template functions. J Opt Soc Am A4:P123

    Google Scholar 

  • Bruno MS, Mote MI, Goldsmith TH (1973) Spectral absorption and sensitivity measurements in single ommatidia of the green crab, Carcinus. J Comp Physiol 82:151–163

    Google Scholar 

  • Caldwell RL, Dingle H (1975) Ecology and evolution of agonistic behavior in stomatopods. Naturwissenschaften 62:214–222

    Google Scholar 

  • Cavenaugh GM (1956) Formulae and methods of the marine biological laboratory chemical room. Woods Hole, Mass

    Google Scholar 

  • Cronin TW (1985) The visual pigment of a stomatopod crustacean, Squilla empusa. J Comp Physiol A 156:679–687

    Google Scholar 

  • Cronin TW (1986) Optical design and evolutionary adaptation in crustacean compound eyes. J Crust Biol 6:1–23

    Google Scholar 

  • Cronin TW (1989) Application of intracellular optical techniques to the study of stomatopod crustacean vision. J Comp Physiol A 164:737–749

    Google Scholar 

  • Cronin TW (1992) Visual rhythms in stomatopod crustaceans observed in the pseudopupil. Biol Bull 182:278–287

    Google Scholar 

  • Cronin TW, Forward RB Jr (1988) The visual pigments of crabs I. Spectral properties. J Comp Physiol A 162:463–478

    Google Scholar 

  • Cronin TW, Marshall NJ (1989a) A retina with at least ten spectral types of photoreceptors in a stomatopod crustacean. Nature 339:137–140

    Google Scholar 

  • Cronin TW, Marshall NJ (1989b) Multiple spectral classes of photoreceptors in the retinas of gonodactyloid stomatopod crustaceans. J Comp Physiol A 166:267–275

    Google Scholar 

  • Cronin TW, Marshall NJ, Land MF (1991) Optokinesis in gonodactyloid mantis shrimps (Crustacea; Stomatopoda; Gonodactylidae). J Comp Physiol A 168:233–240

    Google Scholar 

  • Cronin TW, Nair JN, Doyle RD, Caldwell RL (1988) Visual tracking of rapidly moving targets by stomatopod crustaceans. J Exp Biol 138:155–179

    Google Scholar 

  • Demoll R (1909) Über die Augen und die Augenstielreflexe von Squilla mantis. Zool J, Abt Anat Ontogen Tiere 27:171–212

    Google Scholar 

  • Dingle H (1964) A colour polymorphism in Gonodactylus oerstedi Hansen, 1895 (Stomatopoda). Crustaceana 7:236–240

    Google Scholar 

  • Dingle H, Caldwell RL (1978) Ecology and morphology of feeding and agonistic behavior in mudflat stomatopods (Squillidae). Biol Bull 155:134–149

    Google Scholar 

  • Dingle H, Caldwell RL, Manning RB (1977) Stomatopods of Phuket Island, Thailand. Phuket Mar Biol Center Res Bull 20:1–20

    Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Deuticke, Leipzig Wien — English edition: The physiology of the compound eyes of insects and crustaceans (translated by Hardie RC). Springer, Berlin Heidelberg New York (1989)

  • Froglia C, Giannini S (1989) Field observations on diel rhythms in catchability and feeding of Squilla mantis (L.) (Crustacea, Stomatopoda) in the Adriatic Sea. In: Ferrero EA (ed) Biology of stomatopods. Mucchi, Modena, pp 221–228

  • Goldsmith TH, Cronin TW (1993) The retinoids of seven species of mentis shrimp. Visual Neurosci (in press)

  • Hays D, Goldsmith TH (1969) Microspectrophotometry of the visual pigment of the spider crab Libinia emarginata. Z Vergl Physiol 65:218–232

    Google Scholar 

  • Hiller-Adams P, Widder EA, Case JF (1988) The visual pigments of four deep-sea crustacean species. J Comp Physiol A 163:63–72

    Google Scholar 

  • Horridge GA (1978) The separation of visual axes in apposition compound eyes. Phil Trans R Soc Lond B 285:1–59

    Google Scholar 

  • Kirschfeld K, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6:13–22

    Google Scholar 

  • Land MF, Marshall NJ, Brownless D, Cronin TW (1990) The eyemovements of the mantis shrimp Odontodactylus scyllarus (Crustacea: Stomatopoda). J Comp Physiol A 167:155–166

    Google Scholar 

  • Manning RB (1969) Stomatopod Crustacea of the Western Atlantic. Studies in Tropical Oceanography No. 8, Institute of Marine Sciences, University of Miami, 380 pp

  • Manning RB, Reaka ML (1989) Preliminary observations on the biology of Coronis scolopendra at Fort Pierce, Florida. In : Ferrero EA (ed) Biology of stomatopods. Mucchi, Modena, pp 213–219

  • Manning RB, Schiff H, Abbott BC (1984a) Eye structure and the classification of stomatopod Crustacea. Zool Scripta 13:41–44

    Google Scholar 

  • Manning RB, Schiff H, Abbott BC (1984b) Cornea shape and surface structure in some stomatopod Crustacea. J Crust Biol 4:502–513

    Google Scholar 

  • Marshall NJ (1988) A unique colour and polarisation vision system in mantis shrimps. Nature 333:557–560

    Google Scholar 

  • Marshall NJ, Land MF, King CA, Cronin TW (1991a) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: The detection of polarised light. Phil Trans R Soc Lond B 334:33–56

    Google Scholar 

  • Marshall NJ, Land MF, King CA, Cronin TW (1991b) The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). II. Colour pigments in the eyes of Stomatopod crustaceans: Polychromatic vision by serial and lateral filtering. Phil Trans R Soc Lond B 334:57–84

    Google Scholar 

  • Matsuura S, Hamano T (1984) Selection for artificial burrows by the Japanese mantis shrimp with some notes on natural burrows. Bull J Soc Sci Fish 50:1963–1968

    Google Scholar 

  • Myers AC (1979) Summer and winter burrows of a mantis shrimp, Squilla empusa, in Narragansett Bay, Rhode Island (U.S.A.). Estuarine Coastal Marine Sci 8:87–98

    Google Scholar 

  • Reaka ML, Manning RB (1987) Stomatopod Crustacea of Enewetak Atoll. In: Devaney DM, Reese ES, Burch BL, Helfrich P (eds) The natural history of Eniwetak Atoll, vol 2. Technical Information Center, U.S. Dept Energy, Washington DC, pp 181–190

    Google Scholar 

  • Schiff H (1963) Dim light vision of Squilla mantis L. Am J Physiol 205:927–940

    Google Scholar 

  • Schiff H, Manning RB, Abbott BC (1986) Structure and optics of ommatidia from eyes of stomatopod crustaceans from different luminous habitats. Biol Bull 170:461–480

    Google Scholar 

  • Schönenberger N (1977) The fine structure of the compound eye of Squilla mantis (Crustacea, Stomatopoda). Cell Tissue Res 176:205–233

    Google Scholar 

  • Schönenberger N, Cox JA, Gabbiani G (1980) Evidence for hemocyanin formation in the compound eye of Squilla mantis (Crustacea, Stomatopoda). Cell Tissue Res 176:205–233

    Google Scholar 

  • Snyder AW, Menzel R, Laughlin SB (1973) Structure and function of the fused rhabdom. J Comp Physiol 87:99–135

    Google Scholar 

  • Trevino DL, Larimer JL (1969) The spectral sensitivity and flicker response of the eye of the stomatopod Squilla empusa Say. Comp Biochem Physiol 31:987–991

    Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1986) Eyes, eye stalks and the visual world of semi-terrestrial crabs. J Comp Physiol A 159:801–811

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronin, T.W., Marshall, N.J. & Caldwell, R.L. Photoreceptor spectral diversity in the retinas of squilloid and lysiosquilloid stomatopod crustaceans. J Comp Physiol A 172, 339–350 (1993). https://doi.org/10.1007/BF00216616

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00216616

Key words

Navigation