Skip to main content
Log in

Acatalasemia

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

The abnormalities in acatalasemia at the gene level as well as properties of the residual catalase in Japanese acatalasemia are historically reviewed. The replacement of the fifth nucleic acid, guanine, in the fourth intron by adenine in the acatalasemic gene causes a splicing mutation and hence a deficiency of mRNA. The guanine-to-adenine substitution was detected in two Japanese acatalasemic cases from different families. The properties of the residual catalase are similar to those of normal catalase; the exons are identical. The properties of the residual catalase and the molecular defect in the catalase gene are compared among Japanese, Swiss, and mouse acatalasemias. The physiological role of catalase, as judged from human acatalasemic blood and acatalasemic mice, is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H, Cantz M (1966) Über die cellulare Verteilung der Katalase im Blut Homozygoter und Heterozygoter (Akatalasia). Humangenetik 3:50–63.

    Google Scholar 

  • Aebi H, Wyss SR (1978) Acatalasemia. In: Stanbury JB, Wyngaarden JB, Fredrickson S (eds) The metabolic basis of inherited disease, 4th edn. McGraw-Hill, New York, pp 1792–1807.

    Google Scholar 

  • Aebi H, Heiniger JP, Butler R, Hassig A (1961) Two cases of acatalasia in Switzerland. Experientia 17:466.

    Google Scholar 

  • Aebi H, Jeunet F, Richterich R, Suter H, Butler R, Frei J, Marti HR (1962/63) Observations in two Swiss families with acatalasemia I. Enzymol Biol Clin 2:1–22.

    Google Scholar 

  • Aebi H, Baggiolini M, Dewald B, Lauber E, Suter H, Micheli A, Frei J (1964) Observations in two Swiss families with acatalasia II. Enzymol Biol Clin 4:121–151.

    Google Scholar 

  • Aebi H, Bossi E, Cantz M, Matsubara S, Suter H (1968) Acatalasemia in Switzerland. In: Beutler E (ed) Hereditary disorders of erythrocyte metabolism, vol 1. Grune & Stratton, New York, pp 41–65.

    Google Scholar 

  • Aebi H, Sonja R, Wyss, Scherz B, Gross B (1976) Properties of erythrocyte catalase from homozygotes and heterozygotes for Swiss-type acatalasemia. Biochem Genet 14:791–807.

    Google Scholar 

  • Aebi H, Wyss SR, Scherz B (1977) Unstable mutants and molecular hybrids in enzyme deficiency conditions. Acta Biol Med Ger 36:735–741.

    Google Scholar 

  • Agar NS, Sadrzadeh SMH, Hallaway PE, Eaton JW (1986) Erythrocyte catalase: a somatic oxidant defense? J Clin Invest 77:319–321.

    Google Scholar 

  • Allen DW, Cadman S, McCann SF, Finkel B (1977) Increased membrane binding of erythrocyte catalase in hereditary spherocytosis and in metabolically stressed normal cells. Blood 49:113–123.

    Google Scholar 

  • Atweh GF, Wong C, Reed R, Antonarakis SE, Zhu D, Ghosh PK, Maniatis T, Forget BG, Kazazian HH (1987) A new mutation in IVS-1 of the human globin gene causing β-thalassemia due to abnormal splicing. Blood 70:147–151.

    Google Scholar 

  • Baur EW (1963) Catalase abnormality in a Caucasian family in the United States. Science 140:816–817.

    Google Scholar 

  • Chance B, Oshino N (1971) Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fraction. Biochem J 122:225–233.

    Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605.

    CAS  PubMed  Google Scholar 

  • Crawford DR, Mirault ME, Moret R, Zbinden I, Cerutti PA (1988) Molecular defect in human acatalasemia fibroblasts. Biochem Biophys Res Commun 153:59–66.

    Google Scholar 

  • Delgado W, Calderon R (1979) Acatalasemia in two Peruvian siblings. J Oral Pathol 8:358–368.

    Google Scholar 

  • Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357.

    PubMed  Google Scholar 

  • Eaton JW (1989) Acatalasemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, part II, 6th edn. McGraw-Hill, New York, pp 1551–1561.

    Google Scholar 

  • Fearon ER, Vogelstein B, Feinberg AP (1984) Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours. Nature 309:176–178.

    Google Scholar 

  • Feinstein RN (1949) Perborate as substrate in a new assay of catalase. J Biol Chem 180:1197–1202.

    Google Scholar 

  • Feinstein RN, Seaholm JE, Howard JB, Russell WL (1964) Acatalasemic mice. Proc Natl Acad Sci USA 52:661–662.

    Google Scholar 

  • Feinstein RN, Howard JB, Braun JT, Seaholm JE (1966) Acatalasemic and hypocatalasemic mouse mutants. Genetics 53:923–933.

    Google Scholar 

  • Feinstein RN, Braun JT, Howard JB (1967) Acatalasemic and hypocatalasemic mouse mutants. II. Mutational variations in blood and solid tissue catalase. Arch Biochem Biophys 120:165–169.

    Google Scholar 

  • Gross J, Scherz B, Wyss S, Kunzel W, Maiwald HJ, Hartwig A, Polster H (1977) Charakterisierung der Katalase roter Blutzellen eines Patienten mit den Symptomen einer Takahara-Krank-heit. Acta Biol Med Ger 36:793–795.

    Google Scholar 

  • Jacob HS, Ingbar SH, Jandl JH, Bell SC (1965) Oxidative hemolysis and erythrocyte metabolism in hereditary acatalasia. J Clin Invest 44:1187–1199.

    Google Scholar 

  • Keilin D, Hartree EF (1954) Reactions of methaemoglobin and catalase with peroxides and hydrogen donors. Nature 173:720–723.

    Google Scholar 

  • Kirkman HN, Gaetani GF (1984) A tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci USA 81:4343–4347.

    Google Scholar 

  • Korneluk RG, Quan F, Lewis WH, Guise KS, Willard HF, Holmes MT, Gravel RA (1984) Isolation of human fibroblast catalase cDNA clones. J Biol Chem 259:13819–13823.

    Google Scholar 

  • Krooth RS, Howell RR, Hamilton HB (1962) Properties of acatalasemic cells growing in vitro. J Exp Med 115:313–328.

    Google Scholar 

  • Lapoumeroulie C, Acuto S, Rouabhi F, Labie D, Krishnamoorthy R, Band A (1987) Expression of a β-thalassemia gene with abnormal splicing. Nucleic Acids Res 15:8195–8204.

    Google Scholar 

  • Lewis WH (1985) Establishment of mouse cell lines homozygous for temperature-sensitive mutation in catalase gene. Somat Cell Mol Genet 11:319–324.

    Google Scholar 

  • Matsubara S, Suter H, Aebi H (1967) Fractionation of erythrocyte catalase from normal, hypocatalatic and acatalatic humans. Humangenetik 4:29–41.

    Google Scholar 

  • Narahara K, Kikkawa K, Kimura S, Kimoto H, Ogata M, Kasai R, Hamawaki K, Matsuoka K (1984) Regional mapping of catalase and Wilms tumor aniridia, genitourinary abnormalities, and mental retardation triad loci to the chromosome segment 11p1305–1306. Humangenetik 6:181–185.

    Google Scholar 

  • Nakamura H, Yoshiya M, Kaziro K, Kikuchi G (1952) On “Anenzyima catalasea”, a new type of constitutional abnormality. Proc Jpn Acad 28:59–64.

    Google Scholar 

  • Niikawa N, Fukushima Y, Taniguchi N, Iizuka S, Kajii T (1982) Chromosome abnormalities involving 11p13 and low erythrocyte catalase activity. Hum Genet 60:373–375.

    Google Scholar 

  • Ogata M, Aikoh H (1984) Mechanism of metallic mercury oxidation in vitro by catalase and peroxidase. Biochem Pharmacol 33:490–493.

    Google Scholar 

  • Ogata M, Meguro T (1986) Foetal distribution of inhaled mercury vapor in normal and acatalasemic mice. Physiol Chem Phys Med NMR 18:165–170.

    Google Scholar 

  • Ogata M, Meguro T (1990) Effect of enzyme deficiency on biological exposure monitoring. A toxicogenetic study of acatalasemia. In: Fiserova-Bergerova V, Ogata M (eds) Biological monitoring of exposure to industrial chemicals. ACGIH, Cincinnati, Ohio, pp 149–154.

    Google Scholar 

  • Ogata M, Mizugaki J (1978) Residual catalase in Japanese type acatalasemia. Cell Struct Funct 3:279–292.

    Google Scholar 

  • Ogata M, Satoh Y (1988) Isoelectric focusing of catalase from acatalasemic mouse and human blood, and cultured human skin fibroblasts. Electrophoresis 9:128–131.

    Google Scholar 

  • Ogata M, Takahara S (1963) Quantitative precipitin studies on catalase protein in hemolysate and acetone extract from acatalasemia and hypocatalasemia. Proc Jpn Acad 39:783–788.

    Google Scholar 

  • Ogata M, Sadamoto M, Takahara S (1966) On minimal catalatic activity in Japanese acatalasemic blood. Proc Jpn Acad 42:828–832.

    Google Scholar 

  • Ogata M, Inoue T, Tomokuni K, Takahara S (1970) Catalase activity of immature and mature red cells from acatalasemic mutant. Acta Haematol (Basel) 44:11–20.

    Google Scholar 

  • Ogata M, Hayashi S, Takahara S (1971) Estimation of the frequency of the recessive gene of acatalasemia in Japan. Acta Med Okayama 25:193–198.

    Google Scholar 

  • Ogata M, Tomokuni K, Watanabe S, Osaki H, Sadamoto M, Takahara S (1972) Residual catalase in the blood of Japanese acatalasemia. Tohoku J Exp Med 107:105–114.

    Google Scholar 

  • Ogata M, Mizugaki J, Takahara S (1974) Catalase activity in the organs of Japanese acatalasemias. Tohoku J Exp Med 111: 97–98.

    Google Scholar 

  • Ogata M, Takehisa T, Mizugaki J, Takahara S (1975) Glutathione peroxidase in the red cells of Japanese acatalasemic blood. Jpn J Hum Genet 19:325–333.

    Google Scholar 

  • Ogata M, Mizugaki J, Takeda K, Takahara S (1977a) Activities of catalase in leucocytes and glucose-6-phosphate dehydrogenase in erythrocytes of hypocatalasemia and acatalasemia. Tohoku J Exp Med 122:93–97.

    Google Scholar 

  • Ogata M, Mizugaki J, Ueda K, Ikeda M (1977b) Activities of Superoxide dismutase and glutathione peroxidase in the red cells of Japanese acatalasemia blood. Tohoku J Exp Med 123:95–98.

    Google Scholar 

  • Ogata M, Ikeda M, Sugata Y (1979) In vitro mercury uptake by human acatalasemic erythrocytes. Arch Environ Health 34:218–221.

    Google Scholar 

  • Ogata M, Matsuda A, Meguro T, Aikoh H (1987a) Metallic mercury in the arterial blood of normal and acatalasemic mice exposed to metallic mercury vapor. Physiol Chem Phys Med NMR 19:79–82.

    Google Scholar 

  • Ogata M, Satoh M, Meguro T, Fujii Y, Krishna UK, Kogashiwa M (1987b) Acatalasemia: new aspects of study on peroxisome disease (abstract). 4th International Congress of Inborn Errors of Metabolism Satellite Symposium, Hakone, p 8 (A-1).

  • Ogata M, Fujii Y, Meguro T, Kira S, Matsuda A, Izushi F, Kimoto T, Takahara S (1987c) The level and stability of residual catalase in cultured acatalasemic skin fibroblasts. Acta Med Okayama 41:201–204.

    Google Scholar 

  • Ogata M, Satoh Y (1988) Isoelectric focusing of catalase from acatalasemic mouse and human blood, and cultured human skin fibroblasts. Electrophoresis 9:128–131.

    Google Scholar 

  • Ogata M, Suzuki K, Satoh Y (1989) Characterization of human residual catalase of an acatalasemic patient by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by electrophoretic blotting and immunodetection. Electrophoresis 10:194–198.

    Google Scholar 

  • Ohkura K, Miyashita T, Nakajima H, Matsumoto H, Matsumoto K, Rahabar H, Hedayat S (1984) Distribution of polymorphic traits in Mazandaranian and Guilanian in Iran. Hum Hered 34:27–39.

    Google Scholar 

  • Sadamoto M (1966) Nature of cultured cells of the skin from acatalasemic individuals with Takahara's disease. Acta Med Okayama 20:193–196.

    Google Scholar 

  • Shaffer JB, Suttone RB, Bewley GC (1987) Isolation of a cDNA clone for murine catalase and analysis of an acatalasemic mutant. J Biol Chem 262:12908–12911.

    Google Scholar 

  • Srivastava SK, Ansari NH (1980) The peroxidatic and catalatic activity of catalase in normal and acatalasemic mouse liver. Biochim Biophys Acta 633:317–322.

    Google Scholar 

  • Szeinberg A, Vries A de, Pinkhas J, Dialdetti M, Ezra R (1963) A dual hereditary red blood cell defect in one family: hypocatalasemia and glucose-6-phosphate dehydrogenase deficiency. Acta Genet Med Gemellol (Roma) 12:247–255.

    Google Scholar 

  • Takahara S (1968) Acatalasemia in Japan. In: Beutler E (ed) Hereditary disorders of erythrocyte metabolism, vol 1. Grune & Stratton, New York, pp 21–39.

    Google Scholar 

  • Takahara S, Miyamoto H (1948) Clinical and experimental studies on the odontogenous progressive necrotic ostitis due to lack of blood catalase (in Japanese). J Otorhinol Soc Jpn 51:163–164.

    Google Scholar 

  • Takahara S, Ogata M (1977) Metabolism in Japanese acatalasemia with special reference to superoxide dismutase and glutathione peroxidase. In: Hayaishi O, Asada K (eds) Biochemical and medical aspects of active oxygen. University of Tokyo Press, Tokyo, pp 275–292.

    Google Scholar 

  • Takahara S, Ogata M (1978) Erythrocyte metabolism against oxidation in Japanese acatalasemia. Hum Hered 10:205–211.

    Google Scholar 

  • Takahara S, Hamilton HB, Neet JV, Kobara TY, Ogura Y, Nishimura ET (1960) Hypocatalasemia, a new genetic carrier state. J Clin Invest 39:610–619.

    Google Scholar 

  • Taylor EH, Haut A (1967) Hypocatalasemia in two American men. Clin Res 15:289.

    Google Scholar 

  • Thorup OA, Carpenter J, Howard P (1964) Human erythrocyte catalase: demonstration of heterogeneity and relationship to erythrocyte aging in vivo. Br J Haematol 10:542–550.

    Google Scholar 

  • Tottori Y (1987) Activity and stability of catalase in the organs of acatalasemic mice: comparison of activities at different incubating temperatures by the perborate methods (in Japanese). Okayama Igakkai Zasshi 99:1623–1632.

    Google Scholar 

  • Treisman R, Orkin SH, Maniatis T (1983) Specific transcription and RNA splicing defects in five cloned β-thalassemia genes. Nature 302:591–596.

    Google Scholar 

  • Vatsis KP, Schulman MP (1973) Absence of ethanol metabolism in “acatalasemic” hepatic microsomes that oxidize drugs. Biochem Biophys Res Commun 52:588–594.

    Google Scholar 

  • VanHeyningen V, Boyd AP, Seawright A, Fletcher JM, Fantes JA, Buckton KE, Spowart G, Porteous DJ, Hill RE, Newton MS, Hastie ND (1985) Molecular analysis of chromosome 11 deletion in aniridia-Wilms tumor syndrome. Proc Natl Acad Sci USA 82:8592–8596.

    Google Scholar 

  • Wen JK, Osumi T, Hashimoto T, Ogata M (1988) Diminished synthesis of catalase due to the decrease in catalase mRNA in Japanese-type acatalasemia. Physiol Chem Phys Med NMR 20:171–176.

    Google Scholar 

  • Wen JK, Osumi T, Hashimoto T, Ogata M (1990) Molecular analysis of human acatalasemia: identification of a splicing mutation. J Mol Biol 211:383–393.

    Google Scholar 

  • Wyss SR, Aebi H (1974) Properties of leukocyte catalase from normal and acatalasemic humans. Experientia 30:863–864.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogata, M. Acatalasemia. Hum Genet 86, 331–340 (1991). https://doi.org/10.1007/BF00201829

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201829

Keywords

Navigation