Skip to main content
Log in

Primate DRB genes from the DR3 and DR8 haplotypes contain ERV9 LTR elements at identical positions

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

The HLA-DRB genes of the human major histocompatibility complex constitute a multigene family with a varying number of DRB genes in different haplotypes. To gain further knowledge concerning the evolutionary relationship, the complete nucleotide sequence was determined for a region spanning introns 4 and 5 of the three DRB genes (DRB1*0301, DRB2 and DRB3*0101) from a DR52 haplotype and the single DRB gene (DRB1*08021) in the DR8 haplotype. These analyses identified an endogenous retroviral long terminal repeat element (ERV9 LTR3), inserted at identical positions in intron 5 of the functional DRB genes in these two haplotypes. Comparison of the nucleotide sequence from introns 4 and 5 including the ERV9 LTR elements revealed a strong similarity between the three expressed DRB genes. The DRB3*0101 and DRB1*08021 genes were most similar in this comparison. These findings provide further evidence for a separate duplication in a primordial DR52 haplotype followed by a gene contraction event in the DR8 haplotype. A homologous element was found in a chimpanzee DRB gene from a DR52 haplotype. This represents the first characterized ERV9 LTR element in a nonhuman species. The corresponding introns of the DRB genes in the DR4 haplotype contain no ERV9 LTRs. In contrast, these genes have insertions of distinct Alu repeats, implying distinct evolutionary histories of DR52 and DR53 haplotypes, respectively. Phylogenetic analyses of DRB introns from DR52, DR53, and DR8 haplotypes showed a close relationship between the DRB2 and DRB4 genes. Thus, the ancestral DR haplotype that evolved to generate the DR52 and DR53 haplotypes most likely shared a primordial common DRB gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, G., Larhammar, D., Widmark, E., Servenius, B., Peterson, P. A., and Rask, L. Class II genes of the human major histocompatibility complex: organization and evolutionary relationship of the DRβ genes. J Biol Chem 262: 8748–8758, 1987

    Google Scholar 

  • Andersson, G., Lindblom, B., Andersson, L., Gorski, J., Mach, B., and Rask, L. The single DR β gene of the DRw8 haplotype is closely related to the DR β 3III gene encoding DRw52. Immunogenetics 28: 1–5, 1988

    Google Scholar 

  • Andersson, G., Andersson, L., Larhammar, D., and Rask, L. Organization and evolution of the HLA-DRB genes. In J. Klein and D. Klein (eds.): Molecular Evolution of the Major Histocompatibility Complex, 299–311, Springer, Heidelberg Berlin New York, 1991

    Google Scholar 

  • Andersson, G., Andersson, L., Larhammar, D., Rask, L., and Sigurdardóttir, S. Simplifying genetic locus assignment of HLA-DRB genes. Immunol Today 15: 58–62, 1994

    Google Scholar 

  • Arvidsson, A.-K., Svensson, A.-C., Widmark, E., Andersson, G., Rask, L., and Larhammar, D. Characterization of three separated exons in the HLA class II DR region of the human major histocompatibility complex. Hum Immunol, in press, 1994

  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (eds.): Current Protocols in Molecular Biology, ch. 1.7.1–1.7.15, 15.0.1 – 15.2.11, John Wiley & Sons, New York, 1987–1994

    Google Scholar 

  • Bodmer, J. G., Marsh, S. G. E., Albert, E. D., Bodmer, W. F., Dupont, B., Erlich, H. A., Mach, B., Mayr, W. R., Parham, P., Sasazuki, T., Schreuder, G. M. Th., Strominger, J. L.,, Svejgaard, A., and Terasaki, P. I. Nomenclauture for factors of the HLA system, 1991. Tissue Antigens 39: 161–173, 1992

    Google Scholar 

  • Böhme, J., Andersson, M., Andersson, G., Möller, E., Peterson, P. A., and Rask, L. HLA-DRβ genes vary in number between different DR specificities, whereas the number of DQβ genes is constant. J Immunol 135: 2149–2155, 1985

    Google Scholar 

  • Figueroa, F., O'hUigin, C., Inoko, H., and Klein, J. Primate DRB6 pseudogenes: clue to the evolutionary origin of the HLA-DR2 haplotype. Immunogenetics 34: 324–337, 1991

    Google Scholar 

  • Figueroa, F., O'hUigin, C., Tichy, H., and Klein, J. The origin of the primate Mhc-DRB genes and allelic lineages as deduced from the study of prosimians. J Immunol 152: 4455–4465, 1994

    Google Scholar 

  • Gorski, J., Rollini, P., and Mach, B. Structural comparison of the genes of two HLA-DR supertypic groups: the loci encoding DRw52 and DRw53 are not truly allelic. Immunogenetics 25: 397–402, 1987

    Google Scholar 

  • Gorski, J. The HLA-DRw8 lineage was generated by a deletion in the DR B region followed by first domain diversification. J Immunol 142: 4041–4045, 1989

    Google Scholar 

  • Grahovac, B., Mayer, W., Vincek, V., Figueroa, F., O'hUigin, C., Tichy, H., and Klein, J. Major histocompatibility complex DRB genes of a new world monkey, the cotton-top tamarin (Saguinus oedipus). Mol Biol Evol 9: 403–416, 1992

    Google Scholar 

  • Grosveld, F. G., Lund, T., Murray, E. J., Mellor, A. L., Dahl, H. H. M., and Flavell, R. A. The construction of cosmid libraries which can be used to transform eukaryotic cells. Nucleic Acids Res 10: 6715–6732, 1982

    Google Scholar 

  • Gyllensten, U. B. and Erlich, H. A. MHC class II haplotypes and linkage disequilibrium in primates. Hum Immunol 36: 1–10, 1993

    Google Scholar 

  • Higgins, D. G. and Sharp, P. M. CLUSTAL: A package for performing multiple sequence alignments on a microcomputer. Gene 73: 237–244, 1988

    Article  CAS  PubMed  Google Scholar 

  • Higgins, D. G. and Sharp, P. M. Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5: 151–153, 1989

    Google Scholar 

  • Higuchi, R. Rapid efficient DNA extraction for PCR from cells or blood. Amplifications Perkin Elmer Cetus 2: 1–3, 1989

    Google Scholar 

  • Jonsson, A.-K., Andersson, L., and Rask, L. A cellular and functional split in the DRw8 haplotype is due to a single amino acid replacement (DRβ ser 57-asp 57).Immunogenetics 29: 308–316, 1989

    Google Scholar 

  • Jukes, T. H. and Cantor, C. R. In H. N. Munro (ed.): Mammalian Protein Metabolism, pp. 21–132, Academic Press, New York, 1969

    Google Scholar 

  • Kambhu, S., Falldorf, P., and Lee, J. S. Endogenous retroviral long terminal repeats within the HLA-DQ locus. Proc Natl Acad Sci USA 87: 4927–4931, 1990

    Google Scholar 

  • Kasahara, M., Klein, D., Vincek, V., Sarapata, D. E., Klein, J. Comparative anatomy of the primate major histocompatibility complex DR subregion: evidence for combinations of DRB genes conserved accross species. Genomics 14: 340–349, 1992

    Google Scholar 

  • Kendall, E., Todd, J. A., and Campbell, R. D. Molecular analysis of the MHC class II region in DR4, DR7, and DR9 haplotypes. Immunogenetics 34: 349–357, 1991

    Google Scholar 

  • Klein, J., O'hUigin, C., Kasahara, M., Vincek, V., Klein, D., and Figueroa, F. Frozen haplotypes in Mhc evolution. In J. Klein, and D. Klein (eds.): Molecular Evolution of the Major Histocompatibility Complex, pp. 261–286, Springer, Heidelberg Berlin New York, 1991

    Google Scholar 

  • Klein, J., O'hUigin, C., Fgueroa, F., Mayer, W. E., and Klein, D. Different modes of Mhc evolution in primates. Mol biol Evol 10: 48–59, 1993

    Google Scholar 

  • Kumar, S., Tamura, K., and Nei, M. MEGA: Molecular Evolutionary Genetics Analysis version 1.01, The Pennsylvania State University, University Park, 1993

  • La Mantia, G., Pengue, G., Maglione, D., Pannuti, A., Pascucci, A., and Lania, L. Identification of new human repetitive sequences. Characterization of the corresponding cDNAs and their expression in embryonal carcinoma cells. Nucleic Acids Res 17: 5913–5922, 1989

    Google Scholar 

  • La Mantia, G., Maglione, D., Pengue, G., Di Cristofano, A., Simeone, A., Lanfrancone, L., and Lania, L. Identification and characterization of novel human endogenous retroviral sequences preferentially expressed in undifferentiated embryonal carcinoma cells. Nucleic Acids Res 19: 1513–1520, 1991

    Google Scholar 

  • La Mantia, G., Majello, B., Di Cristofano, A., Strazzullo, M., Minchiotti, G., and Lania, L. Identification of regulatory elements within the minimal promoter region of the human endogenous ERV9 proviruses: accurate transcription initiation is controlled by an Inr-like element. Nucleic Acids Res 20: 4219–4136, 1992

    Google Scholar 

  • Lania, L., Di Cristofano, A., Strazzullo, M., Pengue, G., Majello, B., and La Mantia, G. Structural and functional organization of human endogenous retroviral ERV9 sequences. Virology 191: 464–468, 1992

    Google Scholar 

  • Larhammar, D., Servenius, B., Rask, L., and Peterson, P. A. Characterization of an HLA-DR β pseudogene. Proc Natl Acad Sci USA 82: 1475–1479, 1985

    Google Scholar 

  • Marsh, S. G. E. and Bodmer, J. G. HLA class II nucleotide sequence, 1992. Immunogenetics 37: 79–94, 1992

    Google Scholar 

  • Mñuková-Fajdelová, M., Satta, Y., O'hUigin, C., Mayer, W. E., Figueroa, F., and Klein, J. Alu elements of the primate major histocompatibility complex. Mammalian Genome 5: 405–415, 1994

    Google Scholar 

  • Rollini, P., Mach, B., and Gorski, J. Linkage map of three HLA-DR β-chain genes: evidence for a recent duplication event. Proc Natl Acad Sci USA 82: 7197–7201, 1985

    Google Scholar 

  • Rollini, P., Mach, B., and Gorski, J. Characterization of an HLA-DR β pseudogene in the DRw52 supertypic group. Immunogenetics 25: 336–342, 1987

    Google Scholar 

  • Saitou, N. and Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425, 1987

    CAS  PubMed  Google Scholar 

  • Schönbach, C. and Klein, J. The Alu repeats of the primate DRB genes. In J. Klein and D. Klein (eds.): Molecular Evolution of the Major Histocompatibility Complex, pp. 243–256, Springer, Heidelberg Berlin New York, 1991

    Google Scholar 

  • Spies, T., Sorrentino, R., Boss, J., Okada, K., and Strominger, J. L. Structural organization of the DR subregion of the human major histocompatibility complex. Proc Natl Acad Sci USA 82: 5165–5169, 1985

    Google Scholar 

  • Staden, R. An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Res 10: 2951–2961, 1982

    Google Scholar 

  • Vincek, V., Klein, D., Figueroa, F., Hauptfeld, V., Kasahara, M., O'hUigin, C., Mach, B., and Klein, J. The evolutionary origin of the HLA-DR3 haplotype. Immunogenetics 35: 263–271, 1992

    Google Scholar 

  • Wilkinson, D. A., Mager, D. L., and Leong, J.-A. C. Endogenous human retroviruses. In J. Levy (ed.): The Retroviridae (Vol. 3), pp. 465–535, Plenum Press, New York, 1994

    Google Scholar 

  • Yang, R., Fristansky, B., Deutch, A. H., Huang, R. C., Tan, Y. H., Narang, S., and Wu, R. The nucleotide sequence of a new human repetitive DNA consists of eight tandem repeats of 66 base pairs. Gene 25: 59–66, 1983

    Google Scholar 

  • Zucchi, I. aand Schlessinger, D. Distribution of moderately repetitive sequences pTR5 and LF1 in Xq24-q28 human DNA and their use in assembling YAC contigs. Genomics 12: 264–275, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data reported in this paper have been submitted to the EMBL nucleotide sequence database and have been assigned the accession numbers X82660–X82663

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, AC., Setterblad, N., Sigurdardóttir, S. et al. Primate DRB genes from the DR3 and DR8 haplotypes contain ERV9 LTR elements at identical positions. Immunogenetics 41, 74–82 (1995). https://doi.org/10.1007/BF00182316

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182316

Keywords

Navigation