Skip to main content
Log in

Spatial structure of genetic variation within populations of forest trees

  • Review paper
  • Mating systems, gene dispersal, and genetic structure within population
  • Published:
New Forests Aims and scope Submit manuscript

Abstract

The spatial pattern and structure of genetic variation are important aspects of the population genetics of forest stands. Combined with limits to seed and pollen dispersal, spatial structure affects the level of inbreeding and the action of natural selection. The genetic constitution of stand regeneration, following different forestry practices, is also influenced by spatial structure. For example, natural regeneration with seed trees involves sampling seed trees from a stand that may be genetically nonhomogeneous. This paper reviews theoretical and empirical results on spatial patterns of genetic variation, produced under limited gene flow and selection, in terms of recently developed spatial statistics (e.g., spatial autocorrelation). Genetic correlations in samples from spatially structured populations are also described, as well as how spatial samples can be used to characterize the structure of genetic variation, and how inferences can be made about (spatially distributed) components of fitness and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbujani, G. 1987. Autocorrelation of gene frequencies under isolation by distance. Genetics 117: 777–782.

    Google Scholar 

  • Beckman, J. S. and Mitton, J. B. 1984. Peroxidase allozyme differentiation among successional stands of ponderosa pine. Amer. Midl. Nat. 112: 43–49.

    Google Scholar 

  • Bennett, J. H. and Binet, F. E. 1956. Association between Mendelian factors with mixed selfing and random mating. Heredity 10: 51–56.

    Google Scholar 

  • Bradshaw, A. D. 1984. Ecological significance of genetic variation between populations, pp. 213–228. In: Dirzo, R. and Sarukhan, J. (Eds) Perspectives on Plant Population Ecology. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Brown, A. H. D. and Albrecht, L. 1980. Variable outcrossing and the genetic structure of predominantly self-pollinated species. J. Theor. Biol. 82: 591–606.

    Google Scholar 

  • Brown, A. H. D. and Moran, G. F. 1981. Isozymes and the genetic resources of forest trees, pp. 1–10. In: Conkle, M. T. (Ed) Isozymes in North American Forest Trees and Forest Insects. Pac. SW Forest and Range Expt. Station Tech. Rep. # 48.

  • Campbell, R. K. 1979. Genecology of Douglas-fir in a watershed in the Oregon cascades. Ecology 60: 1036–1050.

    Google Scholar 

  • Cliff, A. D. and Ord, J. K. 1981. Spatial Processes. Pion, London.

    Google Scholar 

  • Crawford, T. J. 1984. The estimation of neighborhood parameters for plant populations. Heredity 52: 273–283.

    Google Scholar 

  • Dewey, S. E. and Heywood, J. S. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution 42: 834–838.

    Google Scholar 

  • Epperson, B. K. 1983. Multilocus Genetic Structure of Natural Populations of Lodgepole Pine. Ph.D. dissertation, Department of Genetics, University of California, Davis.

    Google Scholar 

  • Epperson, B. K. 1989. Spatial patterns of genetic variation within plant populations, pp. 229–253. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Epperson, B. K. 1990. Spatial autocorrelation of genotypes under directional selection. Genetics 124: 757–771.

    Google Scholar 

  • Epperson, B. K. and Allard, R. W. 1984. Allozyme analysis of the mating system in lodgepole pine populations. J. Hered. 75: 212–214.

    Google Scholar 

  • Epperson, B. K. and Allard, R. W. 1987. Linkage disequilibrium between allozymes in natural populations of lodgepole pine. Genetics 115: 341–352.

    Google Scholar 

  • Epperson, B. K. and Allard, R. W. 1989. Spatial autocorrelation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121: 369–377.

    Google Scholar 

  • Epperson, B. K. and Clegg, M. T. 1986. Spatial autocorrelation analysis of flower color polymorphisms within substructured populations of morning glory (Ipomoea purpurea). Am. Nat. 128:840–858.

    Google Scholar 

  • Epperson, B. K. and Clegg, M. T. 1987. Frequency-dependent variation for outcrossing rate among flower color morphs of Ipomoea purpurea. Evolution 41: 1302–1311.

    Google Scholar 

  • Farris, M. S. and Mitton, J. B. 1984. Population density, outcrossing rate and heterozygote superiority in ponderosa pine. Evolution 38: 1151–1154.

    Google Scholar 

  • Gabriel, K. R. and Sokal, R. R. 1969. A new statistical approach to geographic variation analysis. Syst. Zool. 18: 259–270.

    Google Scholar 

  • Hamrick, J. L. and Godt, M. J. 1989. Allozyme diversity in plant species, pp. 43–63. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Imaizumi, Y., Morton, N. E. and Harris, D. E. 1970. Isolation by distance in artificial populations. Genetics 66: 569–582.

    Google Scholar 

  • Malecot, G. 1948. Les Mathématiques de l'Hérédité. Masson, Paris.

    Google Scholar 

  • Malecot, G. 1973. Isolation by distance, pp. 72–75. In: Morton, N. E. (Ed) Genetic Structure of Populations. University of Hawaii Press, Honolulu.

    Google Scholar 

  • Merzeau, D., DiGiusto, F., Comps, B., Thiebaut, B., Letouzey, J. and Cuguen, J. 1989. Genetic control of isozyme systems and heterogeneity of pollen contribution in Beech (Fagus sylvatica L.). Silvae Genetica 38: 195–201.

    Google Scholar 

  • Mitton, J. B. 1983. Conifers, pp. 443–472. In: Tanksley, S. D. and Orton, T. J. (Eds) Isozymes in Plant Genetics and Breeding. Elsevier, Amsterdam.

    Google Scholar 

  • Mitton, J. B. and Grant, M. C. 1984. Associations among protein heterozygosity, growth rate and developmental homeostasis. Ann. Rev. Ecol. Syst. 15:479–499.

    Google Scholar 

  • Mitton, J. B., Linhart, Y. B., Hamrick, J. L. and Beckman, J. S. 1977. Observations on the genetic structure and mating system of ponderosa pine in the Colorado Front Range. Theor. Appl. Genet. 51: 5–13.

    Google Scholar 

  • Milton, J. B., Stutz, H. P., Schuster, W. S. and Shea, K. L. 1989. Genotypic differentiation at PGM in Engelmann spruce from wet and dry sites. Silvae Genetica 38:217–221.

    Google Scholar 

  • Moran, G. F. and Brown, A. H. D. 1980. Temporal heterogeneity of outcrossing rates in alpine ash (Eucalyptus delagatensis R. T. Bak.). Theor. Appl. Gent. 57: 101–105.

    Google Scholar 

  • Morton, N. E. 1973a. Kinship and population structure, pp. 66–69. In: Morton, N. E. (Ed) Genetic Structure of Populations. University of Hawaii Press, Honolulu.

    Google Scholar 

  • Morton, N. E. 1973b. Kinship bioassay, pp. 158–163. In: Morton, N. E. (Ed) Genetic Structure of Populations. University of Hawaii Press, Honolulu.

    Google Scholar 

  • Muona, O. 1989. Population genetics in forest tree improvement, pp. 282–298. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (Eds) Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Muona, O., Yazdani, R. and Rudin, D. 1987. Genetic change between life stages in Pinus sylvestris: allozyme variation in seeds and planted seedlings. Silv. Genet. 36: 39–42.

    Google Scholar 

  • Neale, D. B. and Adams W. T. 1985. The mating system in natural and shelterwood stands of Douglas-fir. Theor. Appl. Genet. 71: 201–207.

    Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70:3321–3323.

    Google Scholar 

  • Oden, N. L. 1984. Assessing the significance of a spatial correlogram. Geographical Analysis 16:1–16.

    Google Scholar 

  • Oden, N. L. and Sokal, R. R. 1986. Directional autocorrelation: an extension of spatial correlograms to two dimensions. Syst. Zool. 35: 608–617.

    Google Scholar 

  • Ord, J. K. 1980. Tests of significance using non-normal data. Geographical Analysis 12: 387–392.

    Google Scholar 

  • Phillips, M. A. and Brown, A. H. D. 1977. Mating system and hybridity in Eucalyptus pauciflora. Aust. J. Biol. Sci. 30: 337–344.

    Google Scholar 

  • Plessas, M. E. and Strauss, S. H. 1986. Allozyme differentiation among populations, stands and cohorts in Monterey pine. Can. J. For. Res. 16:1155–1164.

    Google Scholar 

  • Prout, T. 1973. Appendix to Mitton, J. B. and Koehn, R. K. Population genetics of marine pelecypods. III. Epistasis between functionally related isozymes in Mytilas edulis. Genetics 73: 487–496.

    Google Scholar 

  • Ritland, K. 1985. The genetic mating structure of subdivided populations. 1. Open-mating model. Theor. Pop. Biol. 27: 51–74.

    Google Scholar 

  • Sakai, K. 1985. Studies on breeding structure in two tropical tree species, pp. 212–225. In: Gregorius, H. R. (Ed) Population Genetics in Forestry. Lecture Notes In Biomathematics 60. Springer-Verlag, Berlin.

    Google Scholar 

  • Schoen, D. J. and Latta, R. G. 1989. Spatial autocorrelation of genotypes in populations of Impatiens pallida and Impatiens capensis. Heredity 63:181–189.

    Google Scholar 

  • Shaw, D. V., Kahler, A. L. and Allard, R. W. 1981. A multilocus estimator of mating system parameters in plant populations. Proc. Natl. Acad. Sci. USA 78:1298–1302.

    Google Scholar 

  • Sokal, R. R. 1979. Ecological parameters inferred from spatial correlograms, pp. 167–196. In: Patil, G. P. and Rosenweig, M. L. (Eds) Contemporary Quantitative Ecology and Related Econometrics. International Cooperative Publishing House, Fairland, Md.

    Google Scholar 

  • Sokal, R. R., Jacquez, G. M. and Wooten, M. C. 1989. Spatial autocorrelation analysis of migration and selection. Genetics 121: 845–855.

    Google Scholar 

  • Sokal, R. R. and Oden, N. L. 1978. Spatial autocorrelation in biology. 1. Methodology. Biol. J. Linn. Soc. 10: 199–228.

    Google Scholar 

  • Sokal, R. R. and Wartenberg, D. E. 1983. A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 105: 219–237.

    Google Scholar 

  • Sorensen, F. C. and Miles, R. S. 1982. Inbreeding depression in height, height growth, and survival of Douglas-fir, ponderosa pine and noble fir to 10 years of age. For. Sci. 28: 283–292.

    Google Scholar 

  • Strauss, S. H. 1986. Heterosis at allozyme loci under inbreeding and cross-breeding in Pinus attenuata. Genetics 113: 115–134.

    Google Scholar 

  • Strauss, S. H. and Libby, W. J. 1987. Allozyme heterosis in radiata pine is poorly explained by overdominance. Am. Nat. 130: 879–890.

    Google Scholar 

  • Turner, M. E., Stephens, J. C. and Anderson, W. W. 1982. Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. Proc. Natl. Acad. Sci. USA 79: 203–207.

    Google Scholar 

  • Upton, G. J. G. and Fingleton, B. 1985. Spatial Data Analysis by Example. Vol. 1. Point Pattern and Quantitative Data. Wiley, New York.

    Google Scholar 

  • Wagner, D. B., Sun, Z.-X., Govindaraju, D. R. and Dancik, B. P. 1989. The population genetic structure of chloroplast DNA polymorphism in a Pinus banksiana-P. contorta sympatric region: spatial autocorrelation, pp. 19–32. In: Hallgren, J. E. (Ed) Molecular Genetics of Forest Trees. Proc. Frans Kempe Symp. Swedish Univ., Agric. Sci., Umea, Rep. 8.

  • Wheeler, N. C. and Guries, R. P. 1982. Population structure, genic diversity and morphological variation in Pinus contorta Dougl. Can. J. For. Res. 12: 595–606.

    Google Scholar 

  • Wright, S. 1943. Isolation by distance. Genetics 28: 114–138.

    Google Scholar 

  • Wright, S. 1946. Isolation by distance under diverse systems of mating. Genetics 31: 39–59.

    Google Scholar 

  • Yazdani, R., Lingren, D. and Rudin, D. 1985. Gene dispersion and selling frequency in a seed tree stand of Pinus sylvestris (L.), pp. 1139–1154. In: Gregorius, H. R. (Ed) Population Genetics in Forestry. Lecture Notes In Biomathematics 60, Springer-Verlag, Berlin.

    Google Scholar 

  • Yazdani, R., Muona, O., Rudin, D. and Szmidt, A. E. 1985. Genetic structure of a Pinus sylvestris L. seed-tree stand and naturally regenerated understory. For. Sci. 31: 430–436.

    Google Scholar 

  • Yeh, F. C. and Layton, C. 1979. The organization of genetic variability in central and marginal populations of lodgepole pine Pinus contorta spp. latifolia. Can. J. Genet. Cytol. 21:487–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epperson, B.K. Spatial structure of genetic variation within populations of forest trees. New Forest 6, 257–278 (1992). https://doi.org/10.1007/BF00120648

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120648

Key words

Navigation