Skip to main content
Log in

Gene rearrangements in Chlamydomonas chloroplast DNAs are accounted for by inversions and by the expansion/contraction of the inverted repeat

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To gain insight into the mutational events responsible for the extensive variation of chloroplast DNA (cpDNA) within the green algal genus Chlamydomonas, we have investigated the chloroplast gene organization of Chlamydomonas pitschmannii, a close relative of the interfertile species C. eugametos and C. moewusii whose cpDNAs have been well characterized. At 187 kb, the circular cpDNA of C. pitschmannii is the smallest Chlamydomonas cpDNA yet reported; it is 56 and 105 kb smaller than those of its C. eugametos and C. moewusii counterparts, respectively. Despite this substantial size difference, the arrangement of 77 genes on the C. pitschmannii cpDNA displays only three noticeable differences from the organization of the corresponding genes on the collinear C. eugametos and C. moewusii cpDNAs. These changes in gene order are accounted for by the expansion/contraction of the inverted repeat and one or two inversions in a single-copy region. In land plant cpDNAs, these kinds of events are also responsible for gene rearrangements. The large size difference between the C. pitschmannii and C. eugametos/C. moewusii cpDNAs is mainly attributed to multiple events of deletions/additions as opposed to the usually observed expansion/contraction of the inverted repeat in land plant cpDNAs. We also found that the mitochondrial genome of C. pitschmannii is a circular DNA molecule of 16.5 kb which is 5.5 and 7.5 kb smaller than its C. moewusii and C. eugametos counterparts, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Aldrich J, Cherney BW, Merlin E, Williams C, Mets L: Recombination within the inverted repeat sequences of the Chlamydomonas reinhardtii chloroplast genome produces two orientation isomers. Curr Genet 9: 233–238 (1985).

    Google Scholar 

  2. Aldrich J, Cherney BW, Williams C, Merlin E: Sequence analysis of the junction of the large single copy region and the large inverted repeat in the petunia chloroplast genome. Curr Genet 14: 487–492 (1988).

    Google Scholar 

  3. Baldauf SL, Palmer JD: Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344: 262–265 (1990).

    Google Scholar 

  4. Berry-Lowe SL, Johnson CH, Schmidt GW: Nucleotide sequence of the psbB gene of Chlamydomonas reinhardtii chloroplasts. Plant Physiol 98: 1541–1543 (1992).

    Google Scholar 

  5. Bergeron A: Analyse structurale de l'ADN linéaire de six kilopaires de bases chez Chlamydomonas moewusii. M.Sc. thesis, Université Laval (1990).

  6. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7: 1513–1523 (1979).

    Google Scholar 

  7. Boer PH, Gray MW: Nucleotide sequence of a protein coding region in Chlamydomonas reinhardtii mitochondrial DNA. Nucl Acids Res 14: 7506–7507 (1986).

    Google Scholar 

  8. Boudreau E, Otis C, Turmel M: Conserved gene clusters in the highly rearranged chloroplast genomes of Chlamydomonas moewusii and Chlamydomonas reinhardtii. Plant Mol Biol 24: 585–602 (1994).

    Google Scholar 

  9. Boulanger J: Comparaison des gènes chloroplastiques psbA de Chlamydomonas eugametos et Chlamydomonas moewusii. M.Sc. thesis, Université Laval (1988).

  10. Boynton JE, Gillham NW, Newman SM, Harris EH: Organelle genetics and transformation of Chlamydomonas: In: Herrmann RG (ed) Plant Gene Research, vol VI, pp. 3–64, Springer-Verlag, Vienna (1992).

    Google Scholar 

  11. Büschlen S, Choquet Y, Kuras R, Wollman F-A: Nucleotide sequences of the continuous and separated petA, petB and petD chloroplast genes in Chlamydomonas reinhardtii. FEBS Lett 284: 257–262 (1991).

    Google Scholar 

  12. Choquet Y, Rahire M, Girard-Bascou J, Erickson J, Rochaix J-D: A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J 11: 1697–1704 (1992).

    Google Scholar 

  13. Denovan-Wright EM, Lee RW: Chlamydomonas eugametos mitochondrial genome. In: O'Brien SJ (ed) Genetic Maps, 6th ed., Book 2, pp. 170–171. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1993).

    Google Scholar 

  14. Dron M, Rahire M, Rochaix J-D: Sequence of the chloroplast DNA region of Chlamydomonas reinhardtii containing the gene of the large subunit of ribulose bisphosphate carboxylase and parts of its flanking genes. J Mol Biol 162: 775–793 (1982).

    Google Scholar 

  15. Durocher V, Gauthier A, Bellemare G, Lemieux C: An optional group I intron between the chloroplast small subunit rRNA genes of Chlamydomonas moewusii and C. eugametos. Curr Genet 15: 277–282 (1989).

    Google Scholar 

  16. Erickson JM, Rahire M, Malnoë P, Girard-Bascou J, Pierre Y, Bennoun P, Rochaix J-D: Lack of the D2 protein in a Chlamydomonas reinhardtii psbD mutant affects photosystem II stability and D1 expression. EMBO J 5: 1745–1754 (1986).

    Google Scholar 

  17. Fong SE, Surzycki SJ: Chloroplast RNA polymerase genes of Chlamydomonas reinhardtii exhibit an unusual structure and arrangement. Curr Genet 21: 485–497 (1992).

    Google Scholar 

  18. Fong SE, Surzycki SJ: Organization and structure of plastome psbF, psbL, petG and ORF712 genes in Chlamydomonas reinhardtii. Curr Genet 21: 527–530 (1992).

    Google Scholar 

  19. Gauthier A: Etude d'introns optionnels entre les rDNAs chloroplastiques de Chlamydomonas moewusii et Chlamydomonas eugametos. Ph. D. thesis, Université Laval (1990).

  20. Gray MW: The endosymbiont hypothesis revisited. In: Wolstenholme DR, Jeon KW (eds) International Review of Cytology, Vol 141: Mitochondrial Genomes, pp. 233–357. Academic Press, San Diego (1992).

    Google Scholar 

  21. Harris EH: Chlamydomonas reinhardtii mitochondrial genome. In: O'Brien SJ (ed) Genetic Maps, 6th ed., Book 2, pp. 168–169, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1993).

    Google Scholar 

  22. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M: The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194 (1989).

    Google Scholar 

  23. Howe CJ: The endpoints of an inversion in wheat chloroplast DNA are associated with short repeated sequences containing homology to att-lambda. Curr Genet 10: 139–145 (1985).

    Google Scholar 

  24. Howe CJ, Barker RF, Bowman CM, Dyer TA: Common features of three inversions in wheat chloroplast DNA. Curr Genet 13: 343–349 (1988).

    Google Scholar 

  25. Huang C, Shenglong W, Chen L, Lemieux C, Otis C, Turmel M, Liu X-Q: The Chlamydomonas chloroplast clpP gene contains translated intervening sequences and is essential for cell growth. Mol Gen Genet 244: 151–159 (1994).

    Google Scholar 

  26. Johnson CH, Schmidt GW: The psbB gene cluster of the Chlamydomonas reinhardtii chloroplast: sequence and transcriptional analyses of psbN and psbH. Plant Mol Biol 22: 645–658 (1993).

    Google Scholar 

  27. Khrebtukova I, Spreitzer RJ: Chlamydomonas chloroplast trnR, trnT and trnE genes. Plant Physiol 104: 1093–1094 (1994).

    Google Scholar 

  28. Lee RW, Dumas C, Lemieux C, Turmel M: Cloning and characterization of the Chlamydomonas moewusii mitochondrial genome. Mol Gen Genet 231: 53–58 (1991).

    Google Scholar 

  29. Lemieux B, Turmel M, Lemieux C: Chloroplast DNA variation in Chlamydomonas and its potential application to the systematics of this genus. BioSystems 18: 293–298 (1985).

    Google Scholar 

  30. Liu X-Q, Gillham NW, Boynton JE: Chloroplast ribosomal protein gene rps12 of Chlamydomonas reinhardtii: wild-type sequence, mutation to streptomycin resistance and dependence, and function in Escherichia coli. J Biol Chem 264: 16100–16108 (1989).

    Google Scholar 

  31. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S-I, Inokuchi H, Ozeki H: Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha. Nature 322: 572–574 (1986).

    Google Scholar 

  32. Palmer JD: Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK (eds) Cell Culture and Somatic Cell Genetics of Plants, Vol 7a: The Molecular Biology of Plastids, pp. 5–53, Academic Press, San Diego (1991).

    Google Scholar 

  33. Palmer JD, Boynton JE, Gillham NW, Harris EH: Evolution and recombination of the large inverted repeat in Chlamydomonas chloroplast DNA. In: Steinback KE, Bonitz S, Arntzen CJ, Bogorad L (eds) Molecular Biology of the Photosynthetic Apparatus, pp. 269–278, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1985).

    Google Scholar 

  34. Rochaix J-D, Kuchka M, Mayfield S, Schirmer-Rahire M, Girard-Bascou J, Bennoun P: Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psbC gene product in Chlamydomonas reinhardtii. EMBO J 8: 1013–1021 (1989).

    Google Scholar 

  35. Sambrook J, Fritch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  36. Schmidt RJ, Hosler JP, Gillham NW, Boynton JE: Biogenesis and evolution of chloroplast ribosomes: cooperation of nuclear and chloroplast genes. In: Steinback KE, Bonitz S, Arntzen CJ, Bogorad L (eds) Molecular Biology of the Photosynthetic Apparatus, pp. 417–427, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1985).

    Google Scholar 

  37. Shimada H, Sugiura M: Pseudogenes and short repeated sequences in the rice chloroplast genome. Curr Genet 16: 293–301 (1989).

    Google Scholar 

  38. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M: The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049 (1986).

    Google Scholar 

  39. Sprinzl M, Hartmann T, Weber J, Blank J, Zeidler R: Compilation of tRNA sequences and sequences of tRNA genes. Nucl Acids Res 17 (suppl.): r1-r172 (1989).

    Google Scholar 

  40. Tsai C-H, Strauss SH: Dispersed repetitive sequences in the chloroplast genome of Douglas-fir. Curr Genet 16: 211–218 (1989).

    Google Scholar 

  41. Turmel M, Bellemare G, Lemieux C: Physical mapping of differences between the chloroplast DNAs of the interfertile algae Chlamydomonas eugametos and Chlamydomonas moewusii Curr Genet 11: 543–552 (1987).

    Google Scholar 

  42. Turmel M, Boulanger J, Bergeron A: Nucleotide sequence of the chloroplast petD gene of Chlamydomonas eugametos. Nucl Acids Res 17: 3593 (1989).

    Google Scholar 

  43. Turmel M, Boulanger J, Schnare MN, Gray MW, Lemieux C: Six group I introns and three internal transcribed spacers in the chloroplast large subunit ribosomal RNA gene of the green alga Chlamydomonas eugametos. J Mol Biol 218: 293–311 (1991).

    Google Scholar 

  44. Turmel M, Gutell RR, Mercier J-P, Otis C, Lemieux C: Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa: three internal transcribed spacers and 12 group I intron insertion sites. J Mol Biol 232: 446–467 (1993).

    Google Scholar 

  45. Turmel M, Mercier J-P, Coté M-J: Group I introns interrupt the chloroplast psaB and psbC and the mitochondrial rrnL gene in Chlamydomonas. Nucl Acids Res 21: 5242–5250 (1993).

    Google Scholar 

  46. Turmel M, Otis C: The chloroplast gene cluster containing psbF, psbL, petG and rps3 is conserved in Chlamydomonas. Curr Genet (in press).

  47. Yamada T: Repetitive sequence-mediated rearrangements in Chlorella ellipsoidea chloroplast DNA: completion of nucleotide sequence of the large inverted repeat. Curr Genet 19: 139–147 (1991).

    Google Scholar 

  48. Woessner JP, Gillham NW, Boynton JE: The sequence of the chloroplast atpB gene and its flanking regions in Chlamydomonas reinhardtii. Gene 44: 17–28 (1986).

    Google Scholar 

  49. Woessner JP, Gillham NW, Boynton JE: Chloroplast genes encoding subunits of the H+-ATPase complex of Chlamydomonas reinhardtii are rearranged compared to higher plants: sequence of the atpE gene and location of the atpF and atpI genes. Plant Mol Biol 8: 151–158 (1987).

    Google Scholar 

  50. Woessner JP, Masson A, Harris EH, Bennoun P, Gillham NW, Boynton JE: Molecular and genetic analysis of the chloroplast ATPase of Chlamydomonas. Plant Mol Biol 3: 177–190 (1984).

    Google Scholar 

  51. Zhang D, Spreitzer RJ: Nucleotide sequences of the Chlamydomonas reinhardtii chloroplast genes for tryptophan and glycine transfer RNAs. Nucl Acids Res 17: 8873 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boudreau, E., Turmel, M. Gene rearrangements in Chlamydomonas chloroplast DNAs are accounted for by inversions and by the expansion/contraction of the inverted repeat. Plant Mol Biol 27, 351–364 (1995). https://doi.org/10.1007/BF00020189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020189

Key words

Navigation