Skip to main content
Log in

Dosimetric Comparison of Four Commercial Patient-Specific Quality Assurance Devices for Helical Tomotherapy

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, the delivery quality assurance (DQA) results of commercially available dosimetric systems (ionization chamber and EBT film, MapCHECK, ArcCHECK, and dosimetry check (DC) software) for helical tomotherapy (HT) were compared, and the feasibility of performing pretreatment using MapCHECK, ArcCHECK, and DC for HT, instead of ionization chambers and EBT films, was assessed. Sixty-five HT-treated patients were considered. Point dose differences, dose profiles, and gamma passing rates were used to evaluate the agreement between the calculated and the measured data, and the outcomes of the four DQA devices were compared in various clinical cases. The calculated and the measured point doses were within ±5% of each other. In terms of the root-mean-square error (RMSE), the point dose differences were within 2.9 for the four tested devices in all of the studied cases. Gamma analysis was performed based on the 3%/3 mm and 2%/2 mm passing rate criteria. In terms of the average RMSE, the gamma passing rates of the four tested DQA devices were within 2.85 (3%/3 mm) and 7.30 (2%/2 mm). These DQA systems could be used interchangeably for routine DQA pretreatment in HT cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Chang et al., Prog. Med. Phys. 27, 111 (2016).

    Article  ADS  Google Scholar 

  2. B. Cho, Radiat. Oncol. J. 36, 1 (2018).

    Article  Google Scholar 

  3. K. H. Chang et al., Phys. Med. 31, 553 (2015).

    Article  Google Scholar 

  4. R. Thiyagarajan et al., Rep. Pract. Oncol. Radiother. 21, 50 (2015).

    Article  Google Scholar 

  5. M. Hussein et al., Radiother. Oncol. 109, 370 (2013).

    Article  Google Scholar 

  6. S. Babic, J. Battista and K. Jordan, Int. J. Radiat. Oncol. Biol. Phys. 70, 1281 (2008).

    Article  Google Scholar 

  7. S. Pallotta, L. Marrazzo and M. Bucciolini, Med. Phys. 34, 3724 (2007).

    Article  Google Scholar 

  8. V. Chandraraj et al., J. Appl. Clin. Med. Phys. 12, 338 (2011).

    Article  Google Scholar 

  9. L. Dong et al., Int. J. Radiat. Oncol. Biol. Phys. 56, 867 (2003).

    Article  Google Scholar 

  10. A. Niroomand-Rad et al., Med. Phys. 25, 2093 (1998).

    Article  Google Scholar 

  11. O. A. Zeidan et al., Med. Phys. 33, 4064 (2006).

    Article  Google Scholar 

  12. P. A. Jursinic, R. Sharma and J. Reuter, Med. Phys. 37, 2837 (2010).

    Article  Google Scholar 

  13. D. A. Low et al., Med. Phys. 38, 1313 (2011).

    Article  Google Scholar 

  14. D. A. Low et al., Med. Phys. 30, 1706 (2003).

    Article  Google Scholar 

  15. S. Pai et al., Med. Phys. 34, 2228 (2007).

    Article  Google Scholar 

  16. Y. Zhu et al., Med. Phys. 24, 223 (1997).

    Article  Google Scholar 

  17. M. Fuss et al., Phys. Med. Biol. 52, 4211 (2007).

    Article  Google Scholar 

  18. E. Spezi et al., Phys. Med. Biol. 50, 3361 (2005).

    Article  Google Scholar 

  19. C. Kong et al., Biomed. Imaging Interv. J. 8, 1 (2012).

    Google Scholar 

  20. J. L. Bedford et al., Phys. Med. Biol. 54, N167 (2009).

    Article  ADS  Google Scholar 

  21. P. Hauri et al., J. Appl. Clin. Med. Phys. 15, 181 (2014).

    Article  Google Scholar 

  22. A. J. Olch, Med. Phys. 39, 81 (2012).

    Article  Google Scholar 

  23. C. Neilson, M. Klein, R. Barnett and S. Yartsev, Med. Dosim. 38, 77 (2013).

    Article  Google Scholar 

  24. E. Infusino et al., Med. Dosim. 39, 276 (2014).

    Article  Google Scholar 

  25. P. M. McCowan et al., Phys. Med. Biol. 62, 1600 (2017).

    Article  Google Scholar 

  26. G. Narayanasamy et al., J. Appl. Clin. Med. Phys. 16, 5427 (2015).

    Article  Google Scholar 

  27. J. Gimeno et al., Phys. Med. 30, 954 (2014).

    Article  Google Scholar 

  28. E. Mezzenga et al., J. Instrum. 1, 1 (2014).

    Google Scholar 

  29. S. Deshpande et al., Med. Phys. 44, 5457 (2017).

    Article  Google Scholar 

  30. E. Chung et al., J. Appl. Clin. Med. Phys. 19, 193 (2018).

    Article  Google Scholar 

  31. MapCHECK™ Reference Guide. Document 1175011, Rev T, 23 September 2011. Sun Nuclear Corporation.

  32. MapPHAN User’s Guide. Rotational Dosimetry Delivered. Document 1083012, Rev. A, 26 August 2009. Sun Nuclear Corporation.

  33. ArcCHECK™ Reference Guide; 2008.

  34. Dosimetry Check manual; 2015.

  35. S. Bresciani et al., Radiother. Oncol. 118, 574 (2016).

    Article  Google Scholar 

  36. S. Bresciani et al., Med. Phys. 40, 1 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (Grant nos. NRF-2017M2A2A6A01071192, NRF-2017-M2A2A6A01071189, NRF-2017M2A2A6A01070330, and NRF-2018R1D1A1B07050217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwangwoo Park or Jin Sung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, K.H., Kim, D.W., Choi, J.H. et al. Dosimetric Comparison of Four Commercial Patient-Specific Quality Assurance Devices for Helical Tomotherapy. J. Korean Phys. Soc. 76, 257–263 (2020). https://doi.org/10.3938/jkps.76.257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.76.257

Keywords

Navigation