Skip to main content
Log in

Klein factors and Fermi-Bose equivalence

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Generalizing the kink operator of the Heisenberg spin 1/2 model, we construct a set of Klein factors explicitly such that (1+1)-dimensional fermion theories with an arbitrary number of species are mapped onto the corresponding boson theories with the same number of species and vice versa. The actions for the resultant theories do not possess a nontrivial Klein factor. With this set of Klein factors, we are also able to map the simple boundary states, such as the Neumann and the Dirichlet boundary states, of the fermion (boson) theory onto those of the boson (fermion) theory. Applications of the Fermi-Bose equivalence with the constructed Klein factors to well-known (1+1)-dimensional theories have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 375 (1965).

    Article  MathSciNet  Google Scholar 

  2. S. Mandelstam, Phys. Rev. D 11, 3026 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Coleman, Phys. Rev. D 11, 2088 (1975).

    Article  ADS  Google Scholar 

  4. V. J. Emery, in Highly conducting one-dimensional solids, edited by, J. T. Devreese, R. P. Evrard, and V. E. Doren (Plenum, New York, 1979), Chap. 6, p. 247.

  5. J. Sólyom, Adv. Phys. 28, 201 (1979).

    Article  ADS  Google Scholar 

  6. I. Affleck, in Fields, Strings and Crtical Phenomena, edited by E. Brézin and J. Zinn-Justin (North-Holland, Amsterdam, 1988), p. 563.

  7. E. Fradkin, Field theories of condensed matter physics (Addison-Wesley Publishing Co., Redwood City, CA, 1991).

    MATH  Google Scholar 

  8. J. Voit, Rep. Prog. Phys. 57, 977 (1994).

    Google Scholar 

  9. M. Stone, Bosonization (World Scientific Publishing Co., Singapore, 1994).

    Book  Google Scholar 

  10. J. Delft and H. Schoeller, Ann. Phys. (Leipzig) 7, 225 (1998).

    Article  ADS  Google Scholar 

  11. A. Gogolin, A. Nersesyan, and A. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  12. D. Senechal, Lecture given at the CRM workshop on theoretical methods for strongly correlated electrons, Montreal, May 1999, An introduction to bosonization, [condmat/9908262].

    Google Scholar 

  13. J. Hubbard, Proc. R. Soc. A 240, 539 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Hubbard, Proc. R. Soc. A 243, 336 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  15. J. Hubbard, Proc. R. Soc. A 276, 238 (1963).

    Article  ADS  Google Scholar 

  16. F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E. Korepin, The One-dimensional Hubbard model (Cambridge University Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  17. W. Heisenberg, Z. Phys. 49, 619 (1928).

    Article  ADS  Google Scholar 

  18. P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).

    Article  ADS  Google Scholar 

  19. J. Sirker and M. Bortz, J. Stat. Mech. P01007 (2006).

    Google Scholar 

  20. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  21. H. Saleur, Lectures on Non-Perturbative Field Theory and Quantum Impurity Problems [arXiv:condmat/9812110v1].

  22. H. Saleur, Lectures on Non-Perturbative Field Theory and Quantum Impurity Problems: Part II, New Theoretical Approaches to Strongly Correlated Systems, 23 of the series NATO Science Series, p. 47 (2000), [arXiv:cond-mat/0007309].

    MATH  Google Scholar 

  23. I. Affleck and A. W. W. Ludwig, Nucl. Phys. B 352, 849 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Tomogana, Prog. Theor. Phys. 5, 544 (1950).

    Article  ADS  Google Scholar 

  25. J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  26. F. D. M. Haldane, J. Phys. C. 14, 2585 (1981).

    Article  ADS  Google Scholar 

  27. M. P. A. Fisher and L. I. Glazman [cond-mat/9610037].

  28. A. M. Chang, Rev. Mod. Phys. 75, 1449 (2003).

    Article  ADS  Google Scholar 

  29. C. Chamon, M. Oshikawa, and I. Affleck, Phys. Rev. Lett. 91, 206403 (2003).

    Article  ADS  Google Scholar 

  30. M. Oshikawa, C. Chamon and I. Affleck, J. Stat. Mech. P02008, 102 (2006)

    Google Scholar 

  31. E. Verlinde and H. Verlinde, Nucl. Phys. B 288, 357 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Eguchi and H. Ooguri, Phys. Lett. B 187, 127 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  33. L. Alvarez-Gaumé, J.B. Bost, G. Moore, P. Nelson, and C. Vafa, Commun. Math. Phys. 112, 503 (1987).

    Article  ADS  Google Scholar 

  34. Z. Hlousek and A. Jevicki, Nucl. Phys. B 288, 131 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Sen, JHEP 0204, 048 (2002).

    Article  ADS  Google Scholar 

  36. A. Sen, Int. J. Mod. Phys. A 20, 5513 (2005).

    Article  ADS  Google Scholar 

  37. T. Lee and G. W. Semenoff, JHEP 0505, 072 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Hasselfield, T. Lee, G. W. Semenoff and P. C. E. Stamp, Ann. Phys. 321, 2849 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  39. T. Lee, JHEP 0611, 056 (2006).

    Article  ADS  Google Scholar 

  40. T. Lee, JHEP 02, 090 (2008).

    Article  ADS  Google Scholar 

  41. C G. Callan, and L. Thorlacius, Nucl. Phys. B 329, 117 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  42. J. Polchinski and L. Thorlacius, Phys. Rev. D 50, 622 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  43. T. Lee, JHEP 03, 078 (2009).

    Article  ADS  Google Scholar 

  44. W. Thirring, Ann. Phys. 3, 91 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  45. C. Nayak, M. P. A. Fisher, A. W. W. Ludwig and H. H. Lin, Phys. Rev. B 59, 15 694 (1999).

    Google Scholar 

  46. A. M. Tsvelick and P. B. Wiegmann, J. Stat. Phys. 38, 125 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  47. A. W. W. Ludwig and I. Affleck, Nucl. Phys. B 428, 545 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  48. D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974)

    Article  ADS  Google Scholar 

  49. R. Shankar, Phys. Lett. B 92, 333 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  50. T. Banks, D. Horn and H. Neuberger, Nucl. Phys. B 108, 119 (1976).

    Article  ADS  Google Scholar 

  51. A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983).

    Article  ADS  Google Scholar 

  52. A. O. Caldeira and A. J. Leggett, Physica 121A, 587 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  53. N. Yu. Reshetikhin, J. Phys. A 24, 2387 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  54. H.W.J. Blöte and B. Nienhuis, Phys. Rev. Lett. 72, 1372 (1994).

    Article  ADS  Google Scholar 

  55. J. Kondev, J. Gier and B. Nienhuis, J. Phys. A 29, 6489 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  56. J. Kondev and C. L. Henley, Phys. Rev. Lett. 73, 2786 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taejin Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T. Klein factors and Fermi-Bose equivalence. Journal of the Korean Physical Society 68, 1272–1286 (2016). https://doi.org/10.3938/jkps.68.1272

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.1272

Keywords

Navigation