Skip to main content

Proteomic tools help understanding the metabolic adaptation to negative energy balance in dairy cows

  • Chapter
Energy and protein metabolism and nutrition in sustainable animal production

Abstract

High-yielding dairy cows have enormous energy and nutrient requirements for milk production which are generally not met by a sufficient feed intake resulting in a negative energy balance (NEB) characterized by mobilisation of body reserves. It is still controversial whether during early lactation the mobilization of body reserves causes insufficient feed intake or insufficient feed intake causes mobilization of body reserves. In order to distinguish between cause and effect, we designed feed-restriction studies modelling NEB as well as follow-up studies on periparturient dairy cows and examined metabolic adaptation processes during NEB. To this end, 2D-gel based proteomic approaches coupled with MALDI-TOF-MS and MALDI-TOF-TOF analyses are often used for the investigation of changes in protein expression, posttranslational modifications (PTMs) and protein identification, while subsequent Western Blots are applied to confirm the existence and expression of individual proteins. Proteomic profiling in tissues obtained from frequent liver and muscle biopsies or from slaughter provides insight into regulatory mechanisms at the translational and posttranslational level. We were able to demonstrate that phosphorylation of the adenosine monophosphate-activated protein kinase (AMPK), a cellular energy key sensor, is increased in hypothalamus and liver but not in skeletal muscle during NEB. Muscle tissue in early lactation showed reduced abundance of muscular cytoskeletal proteins and enzymes involved in glycogen synthesis, fatty acid degradation, and TCA cycling, while the expression of enzymes involved in glycolysis, lactate and ATP production was increased. The functional characterisation of the hepatic oxidative metabolism is of particular interest because of its role to provide substrates for the mammary gland and its involvement in the control of feed intake. While feed restriction down-regulated hepatic proteins associated with fatty acid oxidation, early lactation expression of enzymes participating in fatty and amino acid degradation, TCA cycling, ATP production, and oxidative stress defence was increased. The integration of proteome data with corresponding plasma metabolite and hormone concentrations allowed us to propose an inter-organ crosstalk model in which hepatic and skeletal muscle metabolism in early lactating cows supports gluconeogenesis for milk production while hepatic oxidation of fatty acids interferes with the control of feed intake in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen M.S., B.J. Bradford, and M. Oba, 2009. Board Invited Review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim Sci. 87, 3317–3334.

    Article  PubMed  CAS  Google Scholar 

  • Aschenbach J.R., N.B. Kristensen, S.S. Donkin, H.M. Hammon, and G.B. Penner, 2010. Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life 62, 869–877.

    Article  PubMed  CAS  Google Scholar 

  • Bernabucci U., B. Ronchi, N.A. Lacetera, and Nardone. 2005. Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J. Dairy Sci. 88, 2017–2026.

    Article  PubMed  CAS  Google Scholar 

  • Bionaz M., K. Periasamy, S.L. Rodriguez-Zas, R.E. Everts, H.A. Lewin, W.L. Hurley, and J.J. Loor, 2012. Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle. PLoS One. 7, e33268.

    Article  PubMed  CAS  Google Scholar 

  • Corbacho A.M., G. Martinez De La Escalera, and C. Clapp, 2002. Roles of prolactin and related members of the prolactin/ growth hormone/placental lactogen family in angiogenesis. J. Endocrinol. 173, 219–238.

    Article  PubMed  CAS  Google Scholar 

  • Gross J., H.A. van Dorland, F.J. Schwarz, and R.M. Bruckmaier, 2011. Endocrine changes and liver mRNA abundance of somatotropic axis and insulin system constituents during negative energy balance at different stages of lactation in dairy cows. J. Dairy Sci. 94, 3484–3494.

    Article  PubMed  CAS  Google Scholar 

  • Grum D.E., J.K. Drackley, R.S. Younker, D.W. LaCount, and J.J. Veenhuizen, 1996. Nutrition during the dry period and hepatic lipid metabolism of periparturient dairy cows. J. Dairy Sci. 79, 1850–1864.

    Article  PubMed  CAS  Google Scholar 

  • Hammon H.M., G. Stürmer, F. Schneider, A. Tuchscherer, H. Blum, T. Engelhard, A. Genzel, R. Staufenbiel, and W. Kanitz, 2009. Performance and metabolic and endocrine changes with emphasis on glucose metabolism in high-yielding dairy cows with high and low fat content in liver after calving. J. Dairy Sci. 92, 1554–1566.

    Article  PubMed  CAS  Google Scholar 

  • Horvath T.L., Z.B. Andrews, and S. Diano, 2009. Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol. Metab. 20, 78–87.

    Article  PubMed  CAS  Google Scholar 

  • Ingvartsen K.L., and J.B. Andersen, 2000. Integration of metabolism and intake regulation: a review focusing on periparturient animals. J. Dairy Sci. 83, 1573–1597.

    Article  PubMed  CAS  Google Scholar 

  • Kuhla B., D. Albrecht, S. Kuhla, and C.C. Metges, 2009. Proteome analysis of fatty liver in feed deprived dairy cows reveals interaction of fuel sensing, calcium, fatty acid and glycogen metabolism. Physiol. Genomics. 37, 88–98.

    Article  PubMed  CAS  Google Scholar 

  • Kuhla B., D. Albrecht, R. Bruckmaier, T. Viergutz, G. Nürnberg, and C.C. Metges, 2010. Proteome and radio immuno assay analyses of pituitary hormones and proteins in response to feed restriction of dairy cows. Proteomics. 10, 4491–4500.

    Article  PubMed  CAS  Google Scholar 

  • Kuhla B., S. Görs, and C.C. Metges, 2011a. Hypothalamic Orexin A expression and the involvement of AMPK and PPAR-gamma Signaling in Energy Restricted Dairy Cows. Archiv Tierzucht / Archives Animal Breeding. 6, 567–579.

    Google Scholar 

  • Kuhla B., Kuhla S., P.E. Rudolph, D. Albrecht, and C.C. Metges, 2007. Proteomics analysis of hypothalamic response to energy restriction in dairy cows. Proteomics. 7, 3602–3617.

    Article  PubMed  CAS  Google Scholar 

  • Kuhla B., G. Nürnberg, D. Albrecht, S. Görs, H.M. Hammon, and C.C. Metges, 2011b. Involvement of skeletal muscle protein, glycogen and fat metabolism in the adaptation on early lactation of dairy cows. J. Proteome Res. 10, 4252–4262.

    Article  PubMed  CAS  Google Scholar 

  • Langenheim, J.F., D. Tan, A.M. Walker, and W.Y. Chen, 2006. Two wrongs can make a right: dimers of prolactin and growth hormone receptor antagonists behave as agonists. Mol. Endocrinol. 20, 661–674.

    Article  PubMed  CAS  Google Scholar 

  • Lewis U.J., Y.N. Sinha, and G.P. Lewis, 2000. Structure and properties of members of the hGH family: a review. Endocr. J. 47, S1-8.

    Article  PubMed  CAS  Google Scholar 

  • Li X., X. Li, G. Bai, H. Chen, Q. Deng, Z. Liu, L. Zhang, G. Liu, and Z. Wang, 2012a. Effects of non-esterified fatty acids on the gluconeogenesis in bovine hepatocytes. Mol. Cell. Biochem. 359, 385–388.

    Article  PubMed  CAS  Google Scholar 

  • Li P., X.B. Li, S.X. Fu, C.C. Wu, X.X. Wang, G.J. Yu, M. Long, Z. Wang, and G.W. Liu, 2012b. Alterations of fatty acid β-oxidation capability in the liver of ketotic cows. J. Dairy Sci. 95, 1759–1766.

    Article  PubMed  CAS  Google Scholar 

  • Lippolis J.D., B.D. Peterson-Burch, and T.A. Reinhardt, 2006. Differential expression analysis of proteins from neutrophils in the periparturient period and neutrophils from dexamethasone-treated dairy cows. Vet. Immunol. Immunopathol. 111, 149–64.

    Article  PubMed  CAS  Google Scholar 

  • Lippolis J.D., and T.A. Reinhardt, 2005. Proteomic survey of bovine neutrophils. Vet. Immunol. Immunopathol. 103, 53–65.

    Article  PubMed  CAS  Google Scholar 

  • Lippolis J.D., and T.A. Reinhardt, 2008. Centennial paper: Proteomics in animal science. J. Anim. Sci. 86, 2430–41.

    Article  PubMed  CAS  Google Scholar 

  • Locher L.F., N. Meyer, E.M. Weber, J. Rehage, U. Meyer, S. Danicke, and K. Huber, 2011. Hormone-sensitive lipase protein expression and extent of phosphorylation in subcutaneous and retroperitoneal adipose tissues in the periparturient dairy cow. J. Dairy Sci. 94, 4514–4523.

    Article  PubMed  CAS  Google Scholar 

  • Loor J.J., H.M. Dann, R.E. Everts, R. Oliveira, C.A. Green, N.A. Guretzky, S.L. Rodriguez-Zas, H.A. Lewin, and J.K. Drackley, 2005. Temporal gene expression profiling of liver from periparturient dairy cows reveals complex adaptive mechanisms in hepatic function. Physiol. Genomics. 23, 217–226.

    Article  PubMed  CAS  Google Scholar 

  • Loor J.J., R.E. Everts, M. Bionaz, H.M. Dann, D.E. Morin, R. Oliveira, S.L. Rodriguez-Zas, J.K. Drackley, and H.A. Lewin, Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. 2007. Physiol. Genomics. 32, 105–116.

    Article  PubMed  CAS  Google Scholar 

  • Murondoti A., R. Jorritsma, A.C. Beynen, T. Wensing, and M.J. Geelen, 2004. Unrestricted feed intake during the dry period impairs the postpartum oxidation and synthesis of fatty acids in the liver of dairy cows. J. Dairy Sci. 87, 672–679.

    Article  PubMed  CAS  Google Scholar 

  • Schäff C., S. Börner, S. Hacke, U. Kautzsch, D. Albrecht, H.M. Hammon, M. Röntgen, and B. Kuhla, 2012. Increased anaplerosis, TCA cycling, and oxidative phosphorylation in the liver of dairy cows with intensive body fat mobilization during early lactation. J. Proteome Res. 11, 5503–5514.

    Article  PubMed  Google Scholar 

  • Sumner-Thomson J.M., J.L. Vierck, and J.P. McNamara, 2011. Differential expression of genes in adipose tissue of first-lactation dairy cattle. J. Dairy Sci. 94, 361–369.

    Article  PubMed  CAS  Google Scholar 

  • Talamo F., C. D’Ambrosio, S. Arena, P. Del Vecchio, L. Ledda, G. Zehender, L. Ferrara, and A. Scaloni, 2003. Proteins from bovine tissues and biological fluids: defining a reference electrophoresis map for liver, kidney, muscle, plasma and red blood cells. Proteomics. 3, 440–460.

    Article  PubMed  CAS  Google Scholar 

  • Piccione G., V. Messina, A. Schembari, S. Casella, C. Giannetto, and D. Alberghina, 2011. Pattern of serum protein fractions in dairy cows during different stages of gestation and lactation. J. Dairy Res. 78, 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Rawson P., C. Stockum, L. Peng, B. Manivannan, K. Lehnert, H.E. Ward, S.D. Berry, S.R. Davis, R.G. Snell, D. McLauchlan, and T.W. Jordan, 2012. Metabolic proteomics of the liver and mammary gland during lactation. J. Proteomics. 75, 4429–4435.

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt T.A., and J.D. Lippolis, Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. 2008. J. Dairy Sci. 91, 2307–2318.

    Article  PubMed  CAS  Google Scholar 

  • Sejersen H., M.T. Sørensen, T. Larsen, E. Bendixen, and K.L. Ingvartsen, 2012. Liver protein expression in dairy cows with high liver triglycerides in early lactation. J. Dairy Sci. 95, 2409–2421.

    Article  PubMed  CAS  Google Scholar 

  • Weber C., C. Hametner, A. Tuchscherer, B. Losand, E. Kanitz, W. Otten, S.P. Singh, R.M. Bruckmaier, F. Becker, W. Kanitz, and H.M. Hammon, 2013. Variation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows. J. Dairy Sci. 96, 165–180.

    Article  PubMed  CAS  Google Scholar 

  • Xia C., H.Y. Zhang, L. Wu, C. Xu, J.S. Zheng, Y.J. Yan, L.J. Yang, and S. Shu, 2012. Proteomic analysis of plasma from cows affected with milk fever using two-dimensional differential in-gel electrophoresis and mass spectrometry. Res. Vet. Sci. 93, 857–861.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kuhla .

Editor information

James W. Oltjen Ermias Kebreab Hélène Lapierre

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Wageningen Academic Publishers The Netherlands

About this chapter

Cite this chapter

Kuhla, B., Metges, C.C. (2013). Proteomic tools help understanding the metabolic adaptation to negative energy balance in dairy cows. In: Oltjen, J.W., Kebreab, E., Lapierre, H. (eds) Energy and protein metabolism and nutrition in sustainable animal production. Energy and protein metabolism and nutrition in sustainable animal production, vol 134. Wageningen Academic Publishers, Wageningen. https://doi.org/10.3920/978-90-8686-781-3_68

Download citation

Publish with us

Policies and ethics