Skip to main content
Log in

Mode Selection in Oceanic Waveguides

  • HYDRODYNAMICS OF THE MARINE ENVIRONMENT
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A method is proposed for selecting modes and estimating their parameters in shallow water using a single receiver. The method is based on the two-dimensional time–frequency Fourier transform of the moving-source field. The spectral density given by the integral transform is concentrated in the form of focal spots, corresponding to individual modes. A relationship of the mode phase and group velocities with the coordinates of focal-spot peaks is established. Filtering of focal spots and application of the two-dimensional inverse Fourier transform to them reconstructs the fields of selected modes. The results of numerical simulation are presented. The reconstructed modal parameters (amplitude, real part of horizontal wave number, group velocity, damping coefficient) are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. Gazanhes, J. P. Sessarego, and J. L. Garnier, “Identification of modes in some conditions of sound propagation in shallow water,” J. Sound Vib. 56 (2), 251–259 (1978). https://doi.org/10.1016/S0022-460X(78)80019-4

    Article  ADS  Google Scholar 

  2. C. Gazanhes, J. L. Garnier, and J. P. Sessarego, “Beam forming and frequency dependence of mode identification in shallow water propagation,” J. Sound Vib. 65 (2), 165–176 (1979). https://doi.org/10.1016/0022-460X(79)90511-X

    Article  ADS  Google Scholar 

  3. A. R. Parsons, R. Bourke, R. Muench, C. Chiu, J. Lynch, J. H. Miller, A. Plueddemann, and R. Pawiowicz, “The Barents sea polar front in summer,” J. Geophys. Res. 101 (6), 14201–14221 (1996). https://doi.org/10.1029/96JC00119

    Article  ADS  Google Scholar 

  4. M. A. Poleni, “Lineary swept frequency measurements time-delay spectrometry and the Wigner distribution,” J. Audio Eng. Soc. 36 (6), 457–468 (1988). https:// www.aes.org/e-lib/browse.cfm?elib=5146

    Google Scholar 

  5. H. Niu, R. Zhang, and Z. Li, “Theoretical analysis of warping operators for non-ideal shallow water waveguides,” J. Acoust. Soc. Am. 136 (1), 53–65 (2014). https://doi.org/10.1121/1.4883370

    Article  ADS  Google Scholar 

  6. A. I. Belov and G. N. Kuznetsov, “Estimating the acoustic parameters of a model of a shallow-water seafloor using a priori geological and geophysical information and the Wigner transform,” Acoust. Phys. 60 (2), 191–196 (2014). https://doi.org/10.1134/S1063771014010047

    Article  ADS  Google Scholar 

  7. A. I. Belov and G. N. Kuznetsov, “Estimating the acoustic characteristics of surface layers of the sea bottom using four-component vector-scalar receivers,” Acoust. Phys. 62 (2), 194–201 (2016). https://doi.org/10.1134/S1063771016020044

    Article  ADS  Google Scholar 

  8. J. Bonnel, C. Gervaise, B. Nicolas, and J. I. Mars, “Single-receiver geoacoustic inversion using modal reversal,” J. Acoust. Soc. Am. 131 (1), 119–128 (2012). https://doi.org/10.1121/1.3664083

    Article  ADS  Google Scholar 

  9. J. Bonnel, G. L. Touze, B. Nicolas, and J. I. Mars, “Power class utilization with waveguide-invariant approximation,” IEEE Signal Process. Mag. 30 (6), 120–129 (2013). https://doi.org/10.1109/MSP.2013.2267651

    Article  ADS  Google Scholar 

  10. J. Bonnel and A. Thode, “Range and depth estimation of bowhead whale calls in the Arctic using a single hydrophone,” in Proc. Conf. on IEEE Sensor Systems for a Changing Ocean (SSCO), Brest, France, October 13–17, 2014 (IEEE, 2015). ISBN 978-1-4799-5948-8. https://doi.org/10.1109/SSCO.2014.7000373

  11. J. Bonnel, S. Caporale, and A. Thode, “Waveguide mode amplitude estimation using warping and phase compensation,” J. Acoust. Soc. Am. 141 (3), 2243–2255 (2017). https://doi.org/10.1121/1.4979057

    Article  ADS  Google Scholar 

  12. S. N. Sergeev, A. S. Shurup, O. A. Godin, A. I. Vedenev, V. V. Goncharov, A. Yu. Mukhanov, N. A. Zabotin, and M. G. Brown, “Separation of acoustic modes in the Florida Straits using noise interferometry,” Acoust. Phys. 63 (1), 76–85 (2017). https://doi.org/10.1134/S1063771016060154

    Article  ADS  Google Scholar 

  13. M. G. Brown, “Time-warping in underwater acoustic waveguides,” J. Acoust. Soc. Am. 147 (2), 898–910 (2020). https://doi.org/10.1121/10.0000693

    Article  ADS  Google Scholar 

  14. J. Bonnel, A. Thode, D. Wright, and R. Chapman, “Nonlinear time-warping made simple: A step-by-step tutorial on underwater acoustic modal separation with a single hydrophone,” J. Acoust. Soc. Am. 147 (3), 1897–1926 (2020). https://doi.org/10.1121/10.0000937

    Article  ADS  Google Scholar 

  15. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and I. V. Kaznacheev, “Noise source localization in shallow water,” Phys. Wave Phenom. 25 (2), 156–163 (2017). https://doi.org/10.3103/S1541308X17020145

    Article  ADS  Google Scholar 

  16. E. S. Kaznacheeva, V. M. Kuz’kin, G. A. Lyakhov, S. A. Pereselkov, and S. A. Tkachenko, “Adaptive algorithms for interferometric processing,” Phys. Wave Phenom. 28 (3), 267–273 (2020). https://doi.org/10.3103/S1541308X20030103

    Article  ADS  Google Scholar 

  17. A. G. Sazontov and A. I. Malekhanov, “Matched field signal processing in underwater sound channels (review),” Acoust. Phys. 61 (2), 213–230 (2015). https://doi.org/10.1134/S1063771015020128

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 19-29-06075 and 19-38-90326).

D.Yu. Prosovetskii acknowledges the support of the President of the Russian Federation (grant no. MK-6144.2021.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kuz’kin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’kin, V.M., Matvienko, Y.V., Pereselkov, S.A. et al. Mode Selection in Oceanic Waveguides. Phys. Wave Phen. 30, 111–118 (2022). https://doi.org/10.3103/S1541308X22020030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X22020030

Keywords:

Navigation