Skip to main content
Log in

Methods of Assimilation of Sea Surface Temperature Satellite Data and Their Influence on the Reconstruction of Hydrophysical Fields of the Black, Azov, and Marmara Seas Using the Institute of Numerical Mathematics Ocean Model (INMOM)

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The results are analyzed of the simulation of hydrophysical fields of the Black, Azov, and Marmara seas with the Institute of Numerical Mathematics Ocean Model (INMOM) implemented with a spatial resolution of 4 km, with various assimilation technique for sea surface temperature (SST) data from the SEVIRI sensor installed on MSG satellites. The relaxation (so called nudging) and the ensemble optimal interpolation (EnOI) with various assimilation time frequencies (3-, 6-, 12-, and 24-hour assimilation windows) were used as assimilation methods. It was shown that the assimilation of SST data via the EnOI made it possible to reproduce hydrophysical fields more accurately than via nudging or without assimilation at all. Even with the assimilation of SST data irregularly distributed over space and time, a decrease in the calculation error was observed over the entire sea area, and the structures of the zones of temperature rise or drop were more correctly simulated. The best results were achieved with via the EnOI assimilation with an increasing assimilation frequency over time. When SST data were assimilated using the EnOI, the mean error decreased from 0.16°C (24-hour assimilation window) to 0.08°C (3-hour assimilation window); accordingly, the absolute mean error decreased from 1.03 to 0.33°C, and the standard deviation decreased from 1.33 to 0.42°C. In addition, assimilation using the EnOI 3-hour window improved the reproduction of SST during the period of convection cooling. The assimilation of SST data also led to changes in the structure of the surface sea circulation. In some areas, the direction of currents varied within 5°–10°, and the velocity modulus changed by 3–5%. The assimilation of SST data only slightly reduced errors in the structure of the model vertical temperature profile, which can reach 2°C at depths of 30–40 m. At depths greater than 100 m, deviations did not exceed 0.05°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. V. I. Agoshkov, V. P. Shutyaev, E. I. Parmuzin, N. B. Zakharova, T. O. Sheloput, and N. R. Lezina, "Variational Data Assimilation in the Mathematical Model of the Black Sea Dynamics," Morskoi Gidrofizicheskii Zhurnal, No. 6, 35 (2019) [Phys. Oceanogr., No. 6, 26 (2019)].

    Article  Google Scholar 

  2. A. E. Gill, Atmosphere–Ocean Dynamics, Vol. 2 (Mir, Moscow, 1986) [Transl. from English].

    Google Scholar 

  3. S. G. Demyshev, "Numerical Prediction of Currents in the Black Sea with a High Horizontal Resolution," Morskoi Gidrofizicheskii Zhurnal, No. 1 (2011) [in Russian].

  4. N. A. Diansky, V. V. Fomin, E. A. Korshenko, and I. M. Kabatchenko, "The System for Marine Hindcasting and Forecasting of Hydrometeorological Characteristics of the Sea of Azov and Kerch Strait," Ekologiya. Ekonomika. Informatika. Ser. Geoinformatsionnye Tekhnologii i Kosmicheskii Monitoring, No. 5 (YuNTs RAN, Rostov-on-Don, 2020) [in Russian].

  5. V. L. Dorofeev, V. V. Knysh, and G. K. Korotaev, "Assessment of Long-term Variaiblity of Hydrophysical Characteristics of the Black Sea Based on Assimilation of Climatic Hydrological and Altimetric Fields," Morskoi Gidrofizicheskii Zhurnal, No. 4 (2006) [in Russian].

  6. V. V. Efimov and O. I. Komarovskaya, "Formation of the Novaya Zemlya Bora," Morskoi Gidrofizicheskii Zhurnal, No. 2 (2017) [Phys. Oceanogr., No. 2, 24 (2017)].

  7. V. A. Ivanov and V. N. Belokopytov, Oceanography of the Black Sea (Mar. Hydrophys. Inst., Sevastopol, 2011) [in Russian].

    Google Scholar 

  8. M. N. Kaurkin, R. A. Ibrayev, and K. P. Belyaev, "Data Assimilation in the Ocean Circulation Model of High Spatial Resolution Using the Methods of Parallel Programming," Meteorol. Gidrol., No. 7 (2016) [Russ. Meteorol. Hydrol., No. 7, 41 (2016)].

    Article  Google Scholar 

  9. V. V. Knysh, G. K. Korotaev, A. I. Mizyuk, and A. S. Sarkisyan, "Assimilation of Hydrological Observation Data for Calculating Currents in Seas and Oceans," Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].

    Article  Google Scholar 

  10. V. V. Knysh, G. K. Korotaev, V. A. Moiseenko, A. I. Kubryakov, V. N. Belokopytov, and N. V. Inyushina, "Seasonal and Interannual Variability of Black Sea Hydrophysical Fields Reconstructed from 1971–1993 Reanalysis Data," Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 3, 47 (2011)].

    Article  Google Scholar 

  11. P. N. Lishaev, V. V. Knysh, and G. K. Korotaev, "Interannual Variability of the Wind-wave Regime Parameters in the Black Sea," Morskoi Gidrofizicheskii Zhurnal, No. 5, 36 (2020) [Phys. Oceanogr., No. 5, 27 (2020)].

    Article  Google Scholar 

  12. P. N. Lishaev, V. V. Knysh, and G. K. Korotaev, "Retrieval of Synoptic Variability of Hydrophysical Fields of the Black Sea from the Reanalysis for 1980–1993," Morskoi Gidrofizicheskii Zhurnal, No. 5 (2014) [in Russian].

    Google Scholar 

  13. A. I. Mizyuk, "Reanalysis of Hydrophysical Fields of the Black Sea Based on Assimilation of Temperature and Salinity Measurements in a z-coordinate Model," Morskoi Gidrofizicheskii Zhurnal, No. 3 (2014) [in Russian].

  14. A. I. Mizyuk, V. V. Knysh, A. I. Kubryakov, and G. K. Korotaev, "Assimilation of Long-term Hydrological Data in a \(\sigma\)-coordinate Model of the Black Sea by Adaptive Statistics Algorithm," Morskoi Gidrofizicheskii Zhurnal, No. 6 (2009) [in Russian].

  15. B. S. Strukov, Yu. D. Resnyanskii, and A. A. Zelen’ko, "The Structure of Intraannual Variability of Hydrophysical Fields of the Ocean in the Nemo Model Global Version with a Data Assimilation System," Okeanologicheskie Issledovaniya, No. 3, 47 (2019) [in Russian].

  16. V. V. Fomin, N. A. Diansky, E. A. Korshenko, and T. Yu. Vyruchalkina, "The Marine Hindcast and Forecast System for Diagnosis and Prediction of Hydrometeorological Characteristics of the Caspian Sea and Forecast Verification Based on Field Measurements," Meteorol. Gidrol., No. 9 (2020) [Russ. Meteorol. Hydrol., No. 9, 45 (2020)].

    Article  Google Scholar 

  17. V. V. Fomin, I. I. Panasenkova, A. V. Gusev, A. V. Chaplygin, and N. A. Diansky, "Operational Forecasting System for the Arctic Ocean Using the INMOM-Arctic Russian Sea Circulation Model," Arktika: Ekologiya i Ekonomika, No. 2, 11 (2021) [in Russian].

  18. J. Anderson, T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Avellano, "The Data Assimilation Research Testbed: A Community Facility," Bull. Amer. Meteorol. Soc., 90 (2009).

    Article  Google Scholar 

  19. F. S. Castruccio, A. R. Karspeck, G. Danabasoglu, J. Hendricks, T. Hoar, N. Collins, and J. L. Anderson, "An EnOI-based Data Assimilation System with DART for a High-resolution Version of the CESM2 Ocean Component," J. Adv. Model. Earth Systems, 12 (2020).

  20. S. A. Ciliberti, E. Jansen, D. Azevedo, M. Ilicak, M. Gunduz, M. Matreata, L. Lima, A. Aydodgu, S. Causio, L. Stefanizzi, S. Creti, R. Lecci, E. Peneva, S. Masina, G. Coppini, N. Pinardi, and A. Palazov, "Improving the Accuracy of the Black Sea Analysis and Forecasting System in the Framework of Copernicus Marine Service," in 9th EuroGOOS International Conference, Shom, Ifremer, EuroGOOS AISBL, Brest, France (2021).

  21. G. K. Korotaev, T. Oguz, V. L. Dorofeyev, S. G. Demyshev, A. I. Kubryakov, and Yu. B. Ratner, "Development of Black Sea Nowcasting and Forecasting System," Ocean Sci., 7 (2011).

    Article  Google Scholar 

  22. G. K. Korotaev, O. A. Saenko, and C. J. Koblinsky, "Satellite Altimetry Observations of the Black Sea Level," J. Geophys. Res., 106 (2001).

    Article  Google Scholar 

  23. P. Y. le Traon, A. Reppucci, E. A. Fanjul, L. Aouf, A. Behrens, M. Belmonte, A. Bentamy, L. Bertino, V. E. Brando, M. B. Kreiner, M. Benkiran, T. Carval, S. A. Ciliberti, H. Claustre, E. Clementi, G. Coppini, G. Cossarini, M. de Alfonso Alonso-Munoyerro, A. Delamarche, G. Dibarboure, F. Dinessen, M. Drevillon, Y. Drillet, Y. Faugere, V. Fernandez, A. Fleming, M. I. Garcia-Hermosa, M. G. Sotillo, G. Garric, F. Gasparin, C. Giordan, M. Gehlen, M. L. Gregoire, S. Guinehut, M. Hamon, C. Harris, F. Hernandez, J. B. Hinkler, J. Hoyer, J. Karvonen, S. Kay, R. King, T. Lavergne, B. Lemieux-Dudon, L. Lima, C. Mao, M. J. Martin, S. Masina, A. Melet, B. B. Nardelli, G. Nolan, A. Pascual, J. Pistoia, A. Palazov, J. F. Piolle, M. I. Pujol, A. C. Pequignet, E. Peneva, B. P. Gomez, L. P. de la Villeon, N. Pinardi, A. Pisano, S. Pouliquen, R. Reid, E. Remy, R. Santoleri, J. Siddorn, J. She, J. Staneva, A. Stoffelen, M. Tonani, L. Vandenbulcke, K. von Schuckmann, G. Volpe, C. Wettre, and A. Zacharioudaki, "From Observation to Information and Users: The Copernicus Marine Service Perspective," Front. Mar. Sci., 6 (2019).

  24. R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, C. R. Paver, J. R. Reagan, D. R. Johnson, M. Hamilton, and D. Seidov, World Ocean Atlas 2013, Vol. 1: Temperature, Ed. by S. Levitus and A. Mishonov, NOAA Atlas NESDIS 73 (2013).

  25. G. Matishov, D. Matishov, Yu. Gargopa, L. Dashkevich, S. Berdnikov, V. Kulygin, O. Archipova, A. Chikin, I. Shabas, O. Baranova, and I. Smolyar, Climatic Atlas of the Sea of Azov 2008, NOAA Atlas NESDIS 65 (Washington, D.C., 2008).

  26. G. L. Mellor and T. Yamada, "Development of a Turbulence Closure Model for Geophysical Fluid Problems," Rev. Geophys. Space Phys., No. 4, 20 (1982).

    Article  Google Scholar 

  27. S. Moshonkin, V. Zalesny, and A. Gusev, "Simulation of the Arctic—North Atlantic Ocean Circulation with a Two-equation K-Omega Turbulence Parameterization," J. Mar. Sci. Eng., No. 3, 6 (2018).

    Article  Google Scholar 

  28. W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X. Huang, W. Wang, and J. G. Powers, A Description of the Advances Research WRF Version 3, NCAR Technical Note (2008).

  29. A. Storto, S. Dobricic, S. Masina, and P. di Pietro, "Assimilating Along-track Altimetric Observations through Local Hydrostatic Adjustment in a Global Ocean Variational Assimilation System," Mon. Wea. Rev., No. 3, 139 (2011).

    Article  Google Scholar 

  30. V. Zalesny, N. Diansky, V. Fomin, S. Moshonkin, and S. Demyshev, "Numerical Model of the Circulation of the Black Sea and the Sea of Azov," Russ. J. Num. Anal. Math. Model., No. 1, 27 (2012).

    Article  Google Scholar 

  31. M. M. Zweng, J. R. Reagan, J. I. Antonov, R. A. Locarnini, A. V. Mishonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, D. R. Johnson, D. Seidov, and M. M. Biddle, World Ocean Atlas 2013, Vol. 2: Salinity, Ed. by S. Levitus and A. Mishonov, NOAA Atlas NESDIS 74 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Fomin.

Additional information

Translated from Meteorologiya i Gidrologiya, 2023, No. 2, pp. 15-30. https://doi.org/10.52002/0130-2906-2023-2-15-30.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomin, V.V., Diansky, N.A. Methods of Assimilation of Sea Surface Temperature Satellite Data and Their Influence on the Reconstruction of Hydrophysical Fields of the Black, Azov, and Marmara Seas Using the Institute of Numerical Mathematics Ocean Model (INMOM). Russ. Meteorol. Hydrol. 48, 97–108 (2023). https://doi.org/10.3103/S1068373923020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373923020024

Keywords

Navigation